
Jitsuin Archivist
Release v0.1.0

jitsuin.com

Dec 06, 2022

CONTENTS:

1 Introduction 1
1.1 LifeCycle . 1
1.2 Behaviours . 5
1.3 Attachments . 5
1.4 Locations . 6
1.5 Access Policies . 7
1.6 Compliance Policies . 10

2 Administrator configuration 11
2.1 Register your Azure Active Directory with Jitsuin . 11
2.2 Assign Users for Interactive Use . 12
2.3 Configure Client Credentials for Non-Interactive Access . 13
2.4 Getting Access Tokens (client secret) . 17
2.5 Testing Access . 17
2.6 Using PingOne for Enterprise as IDP . 20

3 API Request Authorization and Authentication 29

4 Tenancies API 31
4.1 Tenancy Information . 31

5 TLS CA Certificates Management (v1) 33
5.1 TLS CA Certificates Upload (v1) . 33
5.2 TLS CA Certificate Retrieval (v1) . 34
5.3 TLS CA Certificate Deletion (v1) . 36
5.4 TLS CA Certificates Update (v1) . 36
5.5 TLS CA Certificates Swagger API . 37

6 Compliance API 43
6.1 Compliance . 43
6.2 Creating Compliance Policies . 43
6.3 Types of Compliance Policies . 44
6.4 Compliance Policy Creation . 47
6.5 Compliance Checking . 47
6.6 Compliance Swagger API . 48

7 Identity and Access Management (v1) 55
7.1 IAM Access Policies API (v1) . 55
7.2 IAM Subjects API (v1) . 74

8 Attachments API 83

i

8.1 Retrieve Attachment . 83
8.2 Attachments Swagger API . 84

9 Attachments V2 API 87
9.1 Retrieve Attachment . 87

10 BlobsV1 API 89
10.1 Upload Blob . 89
10.2 Retrieve Blob . 90

11 Locations API 91
11.1 Location Creation . 91
11.2 Location Retrieval . 92
11.3 Locations Swagger API . 94

12 Assets API 101
12.1 Asset Record Creation . 101
12.2 Asset Record Retrieval . 103
12.3 Attachments Operations API . 106
12.4 Builtin Operations API . 108
12.5 RecordEvidence Operations API . 113
12.6 Assets Swagger API . 114

13 Events API 119
13.1 Event Record Creation . 119
13.2 Event Record Retrieval . 119
13.3 Events Swagger API . 122

14 Blockchain API (v1alpha2) 127
14.1 Blockchain Retrieval (v1alpha2) . 127
14.2 Blockchain Swagger API . 128

15 System API 131
15.1 Archivistnode . 131
15.2 Archivistnode Swagger API . 133

16 Miscellaneous 137
16.1 API Request Paging . 137

HTTP Routing Table 143

ii

CHAPTER

ONE

INTRODUCTION

1.1 LifeCycle

Jitsuin Archivist is an asset lifecycle assurance system built to lower business risk. It enables enterprises to reveal,
reduce and report risks introduced through connected devices and Digital Transformation. Jitsuin Archivist maintains
a Full Service History for assets and Internet Things by keeping a permanent shared record of When Who Did What to
a Thing. Following the principle that you can’t secure what you can’t see, this level of visibility and traceability is key
to lowering the risk of business transformation with the Internet of Things.

Jitsuin Archivist makes recording and auditing the full lifecycle of an asset simple: any authorized participant (includ-
ing an agent or endpoint on the device itself) can register the events they know about, from which all participants can
see a relevant aggregate picture of the asset’s maintenance and operational history. By knowing When Who Did What
to a Thing human actors and connected systems can make stronger judgments about the trustworthiness of a device
and the data it produces.

1.1.1 Security Twins and Trustworthiness

Trust is subjective. Compliance policies are a judgement call. No matter what security technology you have in play
every trust decision you make will depend on the circumstances: who is accessing what; where they’re coming from;
how sensitive an operation they’re attempting; the consequences of getting it wrong. An asset that is safe in one context
may not be in another.

Difficult decisions are slow to be made, and slow decisions means lost time. No matter what security mechanisms
are in place, if you can’t trust the assets and data in your systems then the chances are you won’t be able to automate
decisions and processes, keeping humans in the loop and losing the scale advantages of AI and IoT.

Security Twins take the heavy lifting out of this process by providing a simple trust layer that any client or process can
ask. They answer the question: given all that I know about this asset - its security status, maintenance history, active
alarms - can I trust it with what I’m trying to do right now? They help you make smarter, faster, better decisions and
provide traceability that enable you to explain those decisions later on.

1.1.2 Security Twins (Jitsuin Archivist Asset Records) vs Digital Twins

A Digital Twin simplifies Digital Transformation by representing real-world objects in virtual form that allows busi-
ness applications to connect to Internet Thing data through simple APIs. This solution avoids stressing the power-
constrained devices and unreliable network connectivity that often go hand-in-hand with IoT installations.

Security Twins - built from Asset Records in Jitsuin Archivist - are not Digital Twins, although they do share a
number of useful characteristics. Security Twins provide a trust layer that underpins the trustworthiness of Digital
Twin applications. Understanding the differences between the two will help you to get the best out of the Archivist
system and your Digital Transformation.

1

Jitsuin Archivist, Release v0.1.0

Digital Twin Security Twin

Typically connected to an agent on the
physical twin via real-time interfaces

Doesn’t rely on a direct connection to
the physical twin. Any authenticated
actor may report on asset state

Typically seeks to model sensor state
and ‘hot data’ from the device

Concentrates on operational and
maintenance state of the device. Sensor
data is typically only reported if it
is out of safe range or compliance

Acts as a proxy for collecting
any reading from the device when a
direct connection is not feasible

Acts as a Full Service History for the
device and its maintenance operations

Acts as an endpoint for business
applications to gather data or receive
commands

Provides the necessary information and
insight from the asset history and
status to augment Digital Twin data
with a score of trustworthiness,
provenance and compliance

Security Twins and Digital Twins work well together to provide a full picture of Internet of Things operations: the
Digital Twin offering a reliable and efficient view of the most recent known state of the device sensors, and the
Security Twin (Archivist) providing an immutable record of its operational history and firmware state at the times of
those readings. The APIs in this SDK can be used to integrate Jitsuin Archivist with an IoT platform such as Microsoft
Azure IoT Hub, thereby bringing the power of a Security Twin layer without disrupting telemetry and data operations.

1.1.3 Asset Record Creation

The first event in an Asset Record’s life is creation. This initializes its Full Service History record and begins tracking
the device to which that record pertains. Devices must be registered in the Archivist system through the creation of an
Asset Record before any other lifecycle events can be recorded and handled.

Tracked vs Untracked assets

Because the Full Service History of devices lasts forever it is not possible to actually delete Asset Records from the
system. Instead there is a concept of tracked assets (those that are interesting to the system and actively recording
lifecycle events), and untracked assets (those that are no longer actively interesting, for example as a result of decom-
missioning).

This state is reflected in the tracked attribute. When an Asset Record is created its tracked attribute is automati-
cally set to TRACKED.

2 Chapter 1. Introduction

Jitsuin Archivist, Release v0.1.0

When a real asset is disposed of for any reason it may be desirable to remove it from the Jitsuin Archivist system
so that it does not appear in lists or searches. Assets can be removed from default lists and searches by setting the
tracked property to UNTRACKED, but they will still be present in the system with their Service Histories available.

1.1.4 Asset modification

Asset attributes can be modified after creation by using the API. Only the asset identity is fixed: all other attributes
can be modified.

Modification of significant attributes (such as firmware version) results in an audited entry in the asset history.

1.1.5 Recording events in the asset lifecycle

Any interaction with a device can be significant: from user logins to unexpected restarts or ad-hoc observations.
Keeping a record of these events can build up a picture of how an asset came to be in its current state and provide
crucial insight to future maintenance staff, auditors, and security remediation teams.

Archivist allows recording these general lifecycle events through the RecordEvidence behaviour.

For more detail, see RecordEvidence Operations API

1.1.6 Firmware security management

One of the most common sources of security breach in connected systems is unpatched software in devices. By
providing a common platform for all relevant participants to collaborate on device maintenance, Jitsuin Archivist
simplifies effective vulnerability disclosure, device recalls, regulatory compliance, and improved decision making.

As well as recording the current firmware version of each device in its Asset Record, a full history of prior versions,
vulnerability warnings, patches, and times left unpatched is maintained.

Handling the firmware lifecycle record of an asset is performed through the Firmware behaviour. Devices can be
marked as requiring an update for any reason using the updateRequired operation, are marked as vulnerable
through the vulnerability operation, and record successful patching through the update operation.

To aid in analysis and compliance management these events can be linked by adding a common tag to the pair of
messages in the arc_correlation_value attribute.

For more detail, see firmware_behaviour

1.1.7 Maintenance management

There are many factors that affect the security and trustworthiness of a device beyond firmware bugs: expired digital
IDs, access control failures, and physical tampering among them. Jitsuin Archivist records and manages these events
through the maintenanceRequest and maintenance event types.

To aid in analysis and compliance management these events can be linked by adding a common tag to the pair of
messages: for example, a work order number.

For more detail, see maintenance_behaviour

1.1. LifeCycle 3

Jitsuin Archivist, Release v0.1.0

1.1.8 How to create an Asset Record

Creating an Asset Record with the APIs is fast and straightforward. Follow the steps in this order for best success:

1. Determine if the asset is associated with a particular location. If it is, look up the location identity (if it already
exists) or get a new location identity by creating one.

2. Import any attachments associated with the asset (for example, photograph of the physical unit) and get their
identities.

3. Create the Asset, including the (optional) identities of the location and attachments.

For more detail, see Location Creation, Upload Blob and Asset Record Creation

1.1.9 Understanding asset lifecycle events

For details of how to retrieve Asset Records from the system see Asset Record Retrieval.

Lifecycle events in the Archivist system give stakeholders a shared view of “When Who did What to a Thing”. The
“What” and the “Thing” are quite straightforward, but the “When” and “Who” can be more nuanced.

Timestamps

Once committed to the Jitsuin Archivist system, each lifecycle event record carries 3 separate timestamps:

• timestamp_declared - an optional user-supplied value that tells when an event happened. This is use-
ful for cases where the client system is off-line for a period but the user still wishes to record the accurate
time and order of activities (eg inspection rounds in an air-gapped facility). If unspecified, the system sets
timestamp_declared equal to timestamp_accepted (see below).

• timestamp_accepted - the time the event was actually received on the Jitsuin Archivist node’s REST
interface. Set by the system, cannot be changed by the client.

• timestamp_committed - the time the event was confirmed distributed to all DLT nodes in the value chain.
Set by the system, cannot be changed by the client.

Having these 3 fields enables users of Jitsuin Archivist to accurately reflect what is claimed, whilst also preventing
tampering and backdating of entries.

User principals

Once committed to the Jitsuin Archivist system, each lifecycle event record carries 2 separate user identities:

• principal_declared - an optional user-supplied value that tells who performed an event. This is useful
for cases where the user principal/ credential used to connect to the Archivist system does not accurately or
usefully reflect the real-world agent (eg a multi-user application with device-based credentials).

• principal_accepted - the actual user principal information belonging to the credential used to access the
Jitsuin Archivist node’s REST interface. Set by the system and retrieved from the authorizing IDP, cannot be
changed by the client.

4 Chapter 1. Introduction

Jitsuin Archivist, Release v0.1.0

1.2 Behaviours

Jitsuin Archivist supports a wide range of cyber-physical assets with very different capabilities and properties: some
will have simple firmware maintenance lifecycles; others may have complex software configurations to manage; and
yet others may have significant physical maintenance requirements to meet.

‘Behaviours’ are the technical mechanism through which Asset Records (and by extension estate security and compli-
ance posture) are managed. Behaviours represent aspects of the asset lifecycle such as firmware updates or physical
maintenance.

Within each behaviour there is a set of ‘operations’ which update the asset’s service history and create the basis for the
shared evidence base for compliance insights, patch performance and so on.

1.2.1 Declaring allowed Behaviours

In order to maintain integrity of assets’ service histories and the overall security and compliance posture of an estate
it is necessary to restrict which behaviours are pertinent to each asset, and therefore what statements can be made
about the asset’s lifecycle. It is therefore necessary to supply a list of allowed behaviours when first creating the Asset
Record.

1.2.2 System-defined attributes

Certain asset attributes are manipulated and interpreted by the system in order to provide compliance and security
insights for the asset. In order to get the best benefit from the Archivist it is essential to take care to handle these
properties carefully and consistently when passing them to behaviours operations.

All asset properties with an arc_ prefix are used for system-defined purposes. Most operations also support custom
properties which can have arbitrary names, though it is recommended to adopt a naming scheme which minimizes
chances of collisions or confusion with other clients in the value chain.

1.3 Attachments

Attachments in Jitsuin Archivist enable images, PDFs and other binary data to be attached to assets and events. This
brings added richness to the evidence base and facilitates high fidelity collaboration between stakeholders.

1.3.1 Uploading an Attachment

The first step is to upload the attachment to the attachments API and noting the uuid of the uploaded attachment. See
Upload Blob

1.3.2 Attachments on assets

Adding an attachment to an asset enables recording of characteristics of the asset that are very difficult to capture in
text. For example, the specific placement of a component or the device’s serial number or rating plate.

While asset attachments are generally expected to be unique, the same attachment can be applied to multiple assets,
such as a stock image of a type of device.

See Attachments Attach

1.2. Behaviours 5

Jitsuin Archivist, Release v0.1.0

The asset ‘arc_primary_image’

Attachments to assets are named in their arc_display_name property, so that they can be searched and indexed.
Names are arbitrary and may be defined according to the needs of the application, but one name is reserved and
interpreted by the Jitsuin stack: arc_primary_image.

If an asset has an attachment named arc_primary_image then this will be used by the user interface and other
Jitsuin tools to represent the asset.

1.3.3 Attachments on events

Adding an attachment to an event allows recording and communication of asset status that is difficult to capture in
text. For example:

• a photograph of physical state of a device such as alignment of components or wear on tamper seals at the time
of a particular inspection.

• a PDF of a safety conformance report to support a maintenance event.

• a software manifest to support an update.

• an x-ray image

To add attachments to an event simply specify an attachments list in the attributes of the request block
when posting an event. See Attachments Attach for an example of the JSON layout.

1.4 Locations

Assets in Jitsuin Archivist are arranged into locations, which allows logical assets (eg digital twins) to be grouped
together in a physical context (eg a single plant location).

This enables users of the system to quickly identify the answers to questions such as “how many PLCs in the Greyslake
plant need to be updated?”, or “who was the last person to touch any device in the Cape Town facility?”. It is not
required for assets to be associated with a location, but it is a useful way to group assets in the same physical location
without inventing your own link values in custom attributes.

It is important to recognize that the location does not necessarily denote the asset’s current position in space: it simply
determines which facility the asset belongs to. For things that move around, GIS location information can be included
with any event in the Asset Record, and the asset’s arc_last_seen property will be updated appropriately.

1.4.1 Resolution

Locations have full 6-digit decimal latitude and longitude components allowing high-precision placement on any map
renderer or GIS software you wish to link them to. While the primary intention of locations is to provide a way of
grouping a number of assets together into a single plant or facility, it is possible to create and manage a location for
each individual asset if that is more suitable.

6 Chapter 1. Introduction

Jitsuin Archivist, Release v0.1.0

1.4.2 Data members

As with all Jitsuin Archivist data types, locations support custom attributes which can be defined and used for any
purpose by the user. This enables storage of a mailing address, phone number, or contact details of the site manager,
for example.

Natively, the data structure contains and requires only the basic identification and latitude/longitude information to
plot and display in a GIS framework such as Google Maps.

For further details, see Location Creation.

1.5 Access Policies

Sharing the right amount of information with your Value Chain partners is critical to creating a trustworthy Shared
Service History for assets. It is important that every participant be able to see and contribute to the management of
assets they have shared responsibility for without compromising security, commercial, or private personal information.

For example, competing vendors should not see each other’s information, but both should be able to freely collaborate
with their mutual customer or industry regulator.

In other scenarios, it is desirable to share basic maintenance information with a vendor or external maintenance com-
pany, whilst keeping critical operating information such as run cycles and cyber SLAs within a much smaller group.

Access Policies are the method through which this access is defined, allowing asset owners to collaborate with just the
right partners at the right time, sharing as much or as little access to Shared Service Histories as the needs of the value
chain partners dictate.

Note: To collaborate with a value chain partner you first need to exchange public keys in an out-of-band process such
as email, and import the partner’s keys into your system as an IAM Subject.

1.5.1 Configuring Access Policies

When To Create An Access Policy

All transactions are private by default, meaning that only the asset owner can see and update asset Service Histories
until a sharing policy has been set up. This ensures ready compliance with important regimes such as GDPR and
antitrust regulations, as well as allowing safe and ready collaboration with a large and diverse range of value chain
partners in the Jitsuin network when required.

This means that Access Policies must be defined as soon as a need is identified in order to facilitate collaboration
between value chain partners.

Considerations

As with any system handling large amounts of important data, it is important to carefully consider the design and
scope of your access policy rules.

Every situation is different, and the Jitsuin Archivist Access Policy system is flexible and powerful enough to support
most situations, but in general it is recommended to follow some basic rules:

• Aim for fewest possible number of policies: This makes it much easier to review and manage access rights.

• Balance complex, highly-specific policies with simple, broad ones: Rights granted by policy are additive.

1.5. Access Policies 7

Jitsuin Archivist, Release v0.1.0

• A single Access Policy can contain several Permission Groups, so it is possible to define a single filter to cover
a particular population of assets, then apply different rights to different Subjects. This is often a simpler way to
manage access than to create separate Access Policies for each set of Subjects.

• Remember attributes can change: ABAC policies are applied at time of access request, not at time of creation,
so changing attributes on an asset may change which access policies apply to it. This is one of the primary
advantages to an ABAC system but still needs to be borne in mind when designing access control processes.

Revoking Access

Jitsuin Archivist adopts a ‘default deny’ approach so access to an Asset Record is only possible if an Access Policy
explicitly allows it.

Revoking access can therefore be achieved in a number of ways, any of which may be more or less appropriate for the
circumstances:

• Remove the whole Access Policy

• Change the attributes of the Asset so that it no longer matches the Access Policy (eg change location)

• Change the attributes of the user or Subject so that they no longer match the Access Policy (eg change IDP
group)

• Turn off the user’s login at the IDP

1.5.2 Policy Definition

Jitsuin Archivist employs a principle called Attribute-Based Access Control.

Rather than applying a specific policy to each asset, or grouping them into rigid hierarchies, policies are defined in
terms of the observable properties (or attributes) of assets and users, and if both match, the policy is applied. This
enables much greater flexibility and expressivity than traditional hierarchical or role-based methods, whilst at the same
time reducing complexity in handling large-scale systems.

Archivist Access Policies comprise 4 main parts:

• Attribute Filters and Subjects, which determine which users and assets the policy will apply to; and

• Behaviours and Share Attributes, which specify the read and write access granted to Archivist Asset Records
under this policy

Attribute Filters

Attribute Filters are a set of attributes to test against asset attributes. This policy will apply to all assets that match.
The filters take the form of a list of lists, where at least one attribute in each list must match the asset attributes. Or in
other words, inner lists are OR, while outer lists are AND. For example:

Filters = [
[ListOne, ...],
[ListTwo, ...],
[ListThree, ...]

]

In the above simplified example, the policy will apply to an asset only if the asset’s attributes match at least one entry
from each of ListOne AND ListTwo AND ListThree.

In more detail:

8 Chapter 1. Introduction

https://en.wikipedia.org/wiki/Attribute-based_access_control

Jitsuin Archivist, Release v0.1.0

Filters = [
[type=Pump, type=Valve],
[vendor=SynsationIndustries],
[location=ChicagoWest,location=ChicagoEast]

]

In this case, the policy would apply to any Pump or Valve from SynsationIndustries installed in the ChicagoWest or
ChicagoEast sites. It would not match:

• Other device types from SynsationIndustries;

• Pumps or Valves from any other vendor;

• SynsationIndustries Valves installed in a different location

Subjects

Subjects specify which users or value chain partners will be granted the policy access rights. These must have been
imported as IAM Subjects before creating the policy.

Note: In future releases of Archivist it will be possible to specify qualifying Access Subjects by attribute. Presently
each individual Subject must be included in the policy.

Behaviours

Behaviours specifies which asset behaviours the Subjects will be allowed to use. This can be considered equivalent to
write access

Note: See Behaviours for details of behaviours.

An organization’s ability to contribute to the Shared Service History for a given asset will be the union of all Behaviours
write access granted under all policies.

Share Attributes

Share Attributes specify which attributes of the asset will be made visible to the specified Subjects. This can be
considered equivalent to read access.

Note: See Behaviours for details of system-reserved arc_* attributes which should generally be shared with all
Subjects.

An organization’s copy of the Shared Service History for a given asset will contain the union of all Share Attributes
read access granted under all policies.

1.5. Access Policies 9

Jitsuin Archivist, Release v0.1.0

1.6 Compliance Policies

In order to make these trust decisions, Jitsuin Archivist can be configured with Compliance Policies to check assets
against. These policies specify things like tolerance for vulnerability windows, or SLAs for open maintenance calls.
For example:

“Assets must be patched within 40 days of vulnerability notification”

“Maintenance calls must be answered within 72 hours”

Individual assets either pass or fail, and organizations can calculate their overall security/compliance posture based on
what proportion of their assets are breaching their policy set.

Compliance signals can also be used to identify where risk lies in an organization and help to prioritize remedial
activities.

1.6.1 User-defined Compliance Policies

Note: User-defined compliance policies are currently not supported. Future versions of Jitsuin Archivist will allow
users to create policies that are best tuned to their business needs

1.6.2 Built-in Compliance Policies

Every Jitsuin Archivist implements a default policy in compliance_policies/
0000-0000-000000000-00000000 which checks for outstanding firmware vulnerabilities or maintenance
requests. If any requests are outstanding then the asset fails compliance. If all reported vulnerabilities have been
patched and maintenance requests serviced then it passes.

For further details on the API for compliance posture, see Compliance.

10 Chapter 1. Introduction

CHAPTER

TWO

ADMINISTRATOR CONFIGURATION

The Jitsuin Archivist is fully integrated with the Microsoft Identity Platform (v2.0) using OAuth 2.0 and Open ID
Connect. A small amount of Azure administrative configuration is required to control user assignment and enable non
interactive API access. The following section details the necessary configuration.

2.1 Register your Azure Active Directory with Jitsuin

To obtain access to your Jitsuin Archivist:

1. Communicate your Azure Directory ID to Jitsuin.

2. Receive a link to your Jitsuin Archivist.

2.1.1 Open Azure Active Directory

Browse to portal.azure.com and open the Azure Active Directory service from the portal menu.

admin/../screenshots/userdocs_aad_open_active_directory.png

2.1.2 Locating your Tenant ID

Locate the Tenant ID displayed on the Active Directory Overview blade and send this to Jitsuin.

admin/../screenshots/userdocs_aad_tenant_id.png

Note: This identifier is not sensitive information.

11

https://docs.microsoft.com/bs-latn-ba/azure/active-directory/develop/v2-overview
https://portal.azure.com/

Jitsuin Archivist, Release v0.1.0

2.2 Assign Users for Interactive Use

To enable access for individual users to your Jitsuin Archivist:

1. Assign Users to the Jitsuin Archivist Enterprise application.

2. Grant assigned users the appropriate Jitsuin Archivist roles.

This Microsoft guide provides the general details for assigning users and their roles.

The key steps are as follows:

2.2.1 Locate your Jitsuin Archivist Enterprise Application

Having completed admin consent, locate the enterprise application principals for your Jitsuin Archivist. There will be
two Homepage URLs which match the FQDN for the link you received. The URL for the root resource is your API

principal. This is where roles are assigned to users and non-interactive clients.

admin/../screenshots/userdocs_aad_enterprise_applications.png

Note: The /webgate principal authorises your Jitsuin Archivist deployment to act on your users behalf. It needs no
further configuration.

Select the principal with the Homepage URL matching your link.

admin/../screenshots/userdocs_aad_select_principal.png

2.2.2 Check that User assignment is required for your Jitsuin Archivist

The User assignment required setting must be yes in order to restrict access to particular users in your directory. If
it is set to no any user at your organisation will be able to login.

admin/../screenshots/userdocs_aad_check_user_assignment.png

12 Chapter 2. Administrator configuration

https://docs.microsoft.com/bs-latn-ba/azure/active-directory/manage-apps/assign-user-or-group-access-portal

Jitsuin Archivist, Release v0.1.0

2.2.3 Add user to the enterprise application

admin/../screenshots/userdocs_aad_add_user.png

2.2.4 Select the user for role assignment

admin/../screenshots/userdocs_aad_select_user.png

2.3 Configure Client Credentials for Non-Interactive Access

To enable non-interactive access to Jitsuin Archivist APIs:

1. Create an Application registration in your Azure Active Directory.

2. Grant an API access permission for the registration referring to the Jitsuin Archivist API

3. Create a client secret

Note: Certificate based assertion of identity is fully supported. See client_assertion_type and client_assertion in
the official Azure documentation

2.3.1 Create an Application registration

• Choose any name you like.

• Account type should be: accounts in this organisational directory only.

• Redirect URI - leave blank.

2.3. Configure Client Credentials for Non-Interactive Access 13

https://docs.microsoft.com/en-us/azure/active-directory/develop/v1-oauth2-client-creds-grant-flow

Jitsuin Archivist, Release v0.1.0

The Microsoft quickstart register app guide covers the general process.

14 Chapter 2. Administrator configuration

https://docs.microsoft.com/bs-latn-ba/azure/active-directory/develop/quickstart-register-app

Jitsuin Archivist, Release v0.1.0

2.3.2 Add an API Permission to the Application registration

Your app registration must be granted access to the Jitsuin Archivist API.

The Application permissions enable access to the Jitsuin Archivist API using client secrets or certificates. The Mi-
crosoft quickstart configure web app access guide covers the general process. For non-interactive use see Application
permissions.

2.3.3 Enable the desired Jitsuin Archivist roles

2.3. Configure Client Credentials for Non-Interactive Access 15

https://docs.microsoft.com/bs-latn-ba/azure/active-directory/develop/quickstart-configure-app-access-web-apis

Jitsuin Archivist, Release v0.1.0

2.3.4 Grant administrator consent for the new Application registration

2.3.5 Add a client secret to the Application registration

16 Chapter 2. Administrator configuration

Jitsuin Archivist, Release v0.1.0

Take note of the client secret and the application object id (uuid).

Note: If you need to have different secrets for different Jitsuin Archivist roles create an application registration for
each distinct set of roles.

2.4 Getting Access Tokens (client secret)

Having completed the steps at Create an Application registration, and taken note of its application id and the se-
cret, a token can be obtained with the following command. Replace ${API_APP_ID} with the application id, and
${API_APP_SECRET} with your secret from the application registration. ${FQDN} is the FQDN for your Jitsuin
Archivist. ${TENANT} is your directory id, see Open Azure Active Directory

$ RESPONSE=$(curl \
https://login.microsoftonline.com/${TENANT}/oauth2/token\
--data-urlencode "grant_type=client_credentials" \
--data-urlencode "client_id=${API_APP_ID}" \
--data-urlencode "client_secret=${API_APP_SECRET}" \
--data-urlencode "resource=https://${FQDN}")

$ TOKEN=$(echo -n $RESPONSE | jq .access_token | tr -d '"')

2.5 Testing Access

To confirm access token configuration, use the shell command (above) to obtain an access token. The response is json
structured data. The token is found in the access_token field. It is a base64 encoded JSON Web Token.

The header and payload of the TOKEN can be examined with the following commands

Header
echo -n $TOKEN | cut -d '.' -f 1 | base64 -D

Payload
echo -n $TOKEN | cut -d '.' -f 2 | base64 -D

Note: Decoding tokens with an online service exposes your Archivist until you delete the test secret.

The following python script demonstrates how to safely obtain and verify a token. The example requires python 3.6.
Run the script like this:

python3 check-token.py -t ${TENANT} -c ${API_APP_ID} -s ${API_APP_SECRET} -f ${FQDN}

Copy the following python code to check-token.py

#!/usr/bin/env python3

REQUIRES Python 3.6
import sys
import argparse
import subprocess as sp

(continues on next page)

2.4. Getting Access Tokens (client secret) 17

https://jwt.io/introduction/

Jitsuin Archivist, Release v0.1.0

(continued from previous page)

import urllib.parse
import base64
import json
import calendar
import datetime

verify_token=True
try:

import jwcrypto
import jwcrypto.jwk
import jwcrypto.jwt

except ImportError:
verify_token=False

def run():
p = argparse.ArgumentParser(description=__doc__)

p.add_argument("-T", "--token")
p.add_argument("-t", "--tenant")
p.add_argument("-c", "--client-id")
p.add_argument("-s", "--client-secret")
p.add_argument("-f", "--fqdn")

args = p.parse_args()

Support checking a token provided 'as is' and also fetching and checking
a token using the expected customer configuration items

token = args.token
if token is None:

secret = urllib.parse.quote(args.client_secret)
resource = urllib.parse.quote("https://" + args.fqdn)

data = f"grant_type=client_credentials&client_id={args.client_id}"
data += f"&client_secret={secret}&resource={resource}"

cmd = [
"curl", "-X", "POST",
"-HContent-Type: application/x-www-form-urlencoded",
f"https://login.microsoftonline.com/{args.tenant}/oauth2/token",
"-d", data]

Avoid the unpleasant curl output
cp = sp.run(cmd, stdout=sp.PIPE, stderr=sp.PIPE, check=True)
token = cp.stdout.decode()
jdoc = json.loads(token)
token = jdoc["access_token"]
print("TOKEN:")
print(token)

header, payload, *sig = token.split('.')

header = json.loads(base64.b64decode(header + "===").decode())
print(json.dumps(header))

payload = json.loads(base64.b64decode(payload + "===").decode())
(continues on next page)

18 Chapter 2. Administrator configuration

Jitsuin Archivist, Release v0.1.0

(continued from previous page)

print(json.dumps(payload, indent=4, sort_keys=True))

Check that the 'aud' field matches the resource
if args.fqdn and 'https://' + args.fqdn != payload["aud"]:

print("Missing or unexepected aud", file=sys.stderr)
return -1

Check that its issued by the expected tenancy
if args.tenant and args.tenant not in payload["iss"]:

print("Unexepected directory id in issuer (iss)", file=sys.stderr)

Check the Jitsuin Archivist roles are present
roles = payload["roles"]
if "archivist_administrator" not in roles and "guest" not in roles:

print("Token is missing the required roles", file=sys.stderr)
return -1

Check the freshly issued token has not expired and that the issue time is
sensible
iat = int(payload["iat"])
exp = int(payload["exp"])
now = calendar.timegm(datetime.datetime.utcnow().utctimetuple())

if now < iat:
print(f"iat before 'now'. iat={iat}, now={now}", file=sys.stderr)
return -1

if now >= exp:
print(

f"now after 'exp', token expired "
f"or invalid. now={now}, exp={exp}", file=sys.stderr)

return -1

Get the IdP Open ID configuration
cmd = [

"curl", "-HAccept: application/json",
f"{payload['iss']}/.well-known/openid-configuration"]

cp = sp.run(cmd, stdout=sp.PIPE, stderr=sp.PIPE, check=True)

oidconf = json.loads(cp.stdout.decode())

Fetch the keys for verification
cmd = ["curl", "-HAccept: application/json", f"{oidconf['jwks_uri']}"]
cp = sp.run(cmd, stdout=sp.PIPE, stderr=sp.PIPE, check=True)

jwks = json.loads(cp.stdout.decode())
key = None
for k in jwks["keys"]:

if k["kid"] == header["kid"]:
key = k
break

if key is None:
print(

"Failed to find token verification key at issuer", file=sys.stderr)
return -1

if verify_token is False:
print("Please install jwcrypto to verify your token")

(continues on next page)

2.5. Testing Access 19

Jitsuin Archivist, Release v0.1.0

(continued from previous page)

return 0

jwk = jwcrypto.jwk.JWK(**key)
jwt = jwcrypto.jwt.JWT()
If there is any problem with the token, this function will raise an
exception.
jwt.deserialize(token, key=jwk)

return 0

if __name__ == "__main__":
try:

sys.exit(run())
except json.decoder.JSONDecodeError as e:

print(f"json decoding error {str(e)}")
except sp.CalledProcessError as cpe:

print(cpe.output, file=sys.stderr)
except KeyError as e:

print(f"expected key missing {str(e)}", file=sys.stderr)
except ValueError as e:

print(str(e), file=sys.stderr)
except Exception as e:

print(str(e), file=sys.stderr)
sys.exit(-1)

Delete the test secret once this test is completed.

Note: Certificate based assertion of identity is fully supported. See client_assertion_type and client_assertion in
the official Azure documentation

2.6 Using PingOne for Enterprise as IDP

This guide provides intructions on how to integrate PingOne for Enterprise IDP with Jitsuin Archivist.

Before starting:

• Jitsuin will provide a unique URL that will be used when creating the application in PingOne for Enterprise

• Note that some values from step 6 below will be needed by Jitsuin to complete the integration.

• Ping Identity also provide instructions for adding application in the following link: https://docs.pingidentity.
com/bundle/pingone/page/rkz1564020496702-1.html

Steps:

1. Log into PingOne for Enterprise and navigate to “My Applications”

2. Add a new OIDC application and follow the steps below

3. Select application type “Web App” and click Next

20 Chapter 2. Administrator configuration

https://docs.microsoft.com/en-us/azure/active-directory/develop/v1-oauth2-client-creds-grant-flow
https://docs.pingidentity.com/bundle/pingone/page/rkz1564020496702-1.html
https://docs.pingidentity.com/bundle/pingone/page/rkz1564020496702-1.html

Jitsuin Archivist, Release v0.1.0

4. (Wizard Step 1) Provide application details as desired (i.e. Application name: Archivist)

2.6. Using PingOne for Enterprise as IDP 21

Jitsuin Archivist, Release v0.1.0

5. (Wizard Step 2) Configure authorization settings

1. Enable “Refresh Token”

2. Click the “Add Secret” button

3. Send the client ID and client secret to Jitsuin. These are needed to complete the integration in the hosted
Archivist application

4. Leave other values default or set as desired

22 Chapter 2. Administrator configuration

Jitsuin Archivist, Release v0.1.0

6. (Wizard Step 3) Enter the unique URLs as provided by Jitsuin

2.6. Using PingOne for Enterprise as IDP 23

Jitsuin Archivist, Release v0.1.0

7. (Wizard Step 4) Click Next

24 Chapter 2. Administrator configuration

Jitsuin Archivist, Release v0.1.0

8. (Wizard Step 5) Add Email scope to Connected scopes

2.6. Using PingOne for Enterprise as IDP 25

Jitsuin Archivist, Release v0.1.0

9. (Wizard Step 6) Select “Email” for email attribute mapping and “Id” for sub attribute mapping

26 Chapter 2. Administrator configuration

Jitsuin Archivist, Release v0.1.0

10. (Wizard Step 7) Add appropriate groups to allow desired access for users

2.6. Using PingOne for Enterprise as IDP 27

Jitsuin Archivist, Release v0.1.0

Once Jitsuin has received the client ID and secret the connection will be completed and the Archivist app will be
available on the URL provided using SSO login credentials.

28 Chapter 2. Administrator configuration

CHAPTER

THREE

API REQUEST AUTHORIZATION AND AUTHENTICATION

Authorization and Authentication of individual Jitsuin Archivist API requests uses Bearer tokens

See Getting Access Tokens (client secret) for details on how to obtain the token. And Configure Client Credentials for
Non-Interactive Access for the necessary administrative configuration.

The bearer token should be stored in a file and an environment variable BEARER_TOKEN_FILE contains the name
of the file.

The text in the BEARER_TOKEN_FILE should follow the format:

Authorization: Bearer xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

where the x’s are replaced by the actual contents of the bearer token.

Note: Recommended that the directory containing the BEARER_TOKEN_FILE have 0600 permissions

Note: Certificate based assertion of identity is fully supported. See “client_assertion_type” and “client_assertion” in
the official Azure documentation

29

https://tools.ietf.org/html/rfc6750#page-5
https://docs.microsoft.com/en-us/azure/active-directory/develop/v1-oauth2-client-creds-grant-flow

Jitsuin Archivist, Release v0.1.0

30 Chapter 3. API Request Authorization and Authentication

CHAPTER

FOUR

TENANCIES API

4.1 Tenancy Information

The tenancies service provides information about your Archivist tenancy.

The tenancy information includes the list of user principals who have root or super-user access rights.

Create the bearer_token and store in a file in a secure local directory with 0600 permissions.

See API Request Authorization and Authentication.

Note: The following example shows use of the API over curl in a bash terminal. The concepts are fully portable to
any other REST client (eg PostMan or python requests)

Set the URL (for example):

$ export URL=https://synsation.1234-5678.nodes.archivist.jitsuin.io

Note: Only tenant root users are allowed to call the tenancies endpoint. Other users will recieve a 403 response.

4.1.1 Fetch the current list of tenant root principals

To fetch the list of root principals, simply GET the tenancies/root_principals resource:

$ curl -v -X GET \
-H "@$BEARER_TOKEN_FILE" \
$URL/archivist/v1/tenancies/root_principals

4.1.2 Update the list of tenant root principals

Define the update parameters and store in /path/to/jsonfile:

{
"root_principals": [

{
"issuer": "https://login.microsoftonline.com/5c129635-5858-4fe3-9bef-

→˓444f6c7ee1cf/v2.0",
"subject": "58589bef-4fe3-9a3b-23df-8527bc45e1cf",

(continues on next page)

31

Jitsuin Archivist, Release v0.1.0

(continued from previous page)

"display_name": "Jane Smith",
"email": "jane.smith@synsation.org"

},
{

"issuer": "https://login.microsoftonline.com/5c129635-5858-4fe3-9bef-
→˓444f6c7ee1cf/v2.0",

"subject": "27bc5b4f-9a3b-4fe3-23df-e1c7bc45e1cf",
"display_name": "Nate Rogers",
"email": "nate.rogers@synsation.org"

}
}

}

Note:

issuer required The principal’s issuer string for your Identity Provider. This must match the Identity Provider for all
existing root principals.

subject required The principal’s subject string as provided by your Identity Provider.

display_name optional Friendly name for the user principal. Displayed in the Archivist GUI.

email optional Email address for the principal.

Update the root principals by PATCHing the tenancies/root_principals resource:

$ curl -v -X PATCH \
-H "@$BEARER_TOKEN_FILE" \
-H "Content-type: application/json" \
-d "@/path/to/jsonfile" \
$URL/archivist/v1/tenancies/root_principals

Note: For safety reasons you are not allowed to remove yourself from the list of root principals.

32 Chapter 4. Tenancies API

CHAPTER

FIVE

TLS CA CERTIFICATES MANAGEMENT (V1)

Organisational access to the various resources in Jitsuin Archivist can be managed by defined TLS CA certificates.

The contents of the PEM file is stored together with a display name and a unique id.

5.1 TLS CA Certificates Upload (v1)

Create the bearer_token and store in a file in a secure local directory with 0600 permissions.

See API Request Authorization and Authentication.

Note: The following example shows use of the API over curl in a bash terminal. The concepts are fully portable to
any other REST client (eg PostMan or python requests)

Set the URL (for example):

$ export URL=https://synsation.1234-5678.nodes.archivist.jitsuin.io

Define the TLS CA certificate parameters and store in /path/to/jsonfile (certificate field shortened for brevity):

{
"display_name": "Some description",
"certificate": "-----BEGIN CERTIFICATE-----\

→˓nMIIFxDCCA6ygAwIBAgIBAjANBgkqhkiG9w0BAQsFADCBsDELMAkGA1UEBhMCVVMx\nETAPBgNV....1NF/
→˓BjDZ4wdexw==\n-----END CERTIFICATE-----\n"
}

To include the PEM file content in a JSON string it must be flattened to a single line. To create a single line represen-
tation of a PEM file for the archivist api, you must replace new lines with the literal string “n”. The following unix
command could be used:

$ awk 'NF {sub(/\r/, ""); printf "%s\\n",$0;}' cert-name.pem

Note:

display_name required Friendly name for the location. Displayed in the Archivist GUI.

certificate required Single line “flattened” PEM containing a CERTIFICATE.

Create the CA Certificate:

33

Jitsuin Archivist, Release v0.1.0

$ curl -v -X POST \
-H "@$BEARER_TOKEN_FILE" \
-H "Content-type: application/json" \
-d "@/path/to/jsonfile" \
$URL/archivist/v1/tlscacertificates

The response is (certificate field shortened for brevity):

{
"identity": "tlscacertificates/3f5be24f-fd1b-40e2-af35-ec7c14c74d53",
"display_name": "Some description",
"certificate": "-----BEGIN CERTIFICATE-----

→˓MIIEBDCCAuygAwIBAgIDAjppMA0GCSqGSIb3DQEBBQUAMEIxCzAJBgNVBAYTAlVT -----END
→˓CERTIFICATE-----"
}

Note: A full API reference is available in Swagger POST API

5.2 TLS CA Certificate Retrieval (v1)

Create the bearer_token and store in a file in a secure local directory with 0600 permissions.

See API Request Authorization and Authentication.

Note: The following example shows use of the API over curl in a bash terminal. The concepts are fully portable to
any other REST client (eg PostMan or python requests)

Set the URL (for example):

$ export URL=https://synsation.1234-5678.nodes.archivist.jitsuin.io

TLS CA Certificate records in Jitsuin Archivist are tokenized at creation time and referred to in all API calls and smart
contracts throughout the system by a unique identity of the form:

tlscacertificates/12345678-90ab-cdef-1234-567890abcdef.

If you do not know the certificate’s identity you can fetch TLS CA Certificate records using other information you do
know, such as the certificate’s name.

5.2.1 Fetch all TLS CA Certificates (v1)

To fetch all TLS CA certificates records, simply GET the tlscacertificates resource:

$ curl -v -X GET \
-H "@$BEARER_TOKEN_FILE" \
$URL/archivist/v1/tlscacertificates

34 Chapter 5. TLS CA Certificates Management (v1)

openapi.html#post--archivist-tlscacertificates

Jitsuin Archivist, Release v0.1.0

5.2.2 Fetch specific TLS CA Certificate by identity (v1)

If you know the unique identity of the TLS CA certificate Record simply GET the resource:

$ curl -v -X GET \
-H "@$BEARER_TOKEN_FILE" \
$URL/archivist/v1/tlscacertificates/6a951b62-0a26-4c22-a886-1082297b063b

5.2.3 Fetch TLS CA Certificates by name (v1)

To fetch all TLS CA Certificates with a specific name, GET the tlscacertificates resource and filter on
display_name:

$ curl -g -v -X GET \
-H "@$BEARER_TOKEN_FILE" \
$URL/archivist/v1/tlscacertificates?display_name=Acme

Each of these calls returns a list of matching TLS CA Certificate records in the form (certificate field shortened for
brevity):

{
"certificates": [

{
"identity": "tlscacertificates/6a951b62-0a26-4c22-a886-1082297b063b",
"display_name": "Some description",
"certificate": "-----BEGIN CERTIFICATE-----

→˓MIIEBDCCAuygAwIBAgIDAjppMA0GCSqGSIb3DQEBBQUAMEIxCzAJBgNVBAYTAlVT -----END
→˓CERTIFICATE----- "

},
{

"identity": "tlscacertificates/12345678-0a26-4c22-a886-1082297b063b",
"display_name": "Some other description",
"certificate": "-----BEGIN CERTIFICATE-----

→˓XYZEBDCCAuygAwIBAgIDAjppMA0GCSqGSIb3DQEBBQUAMEIxCzAJBgNVBAYTAlVT -----END
→˓CERTIFICATE----- "

}
]

}

Note: The number of records returned has a maximum limit. If this limit is too small then one must use API Request
Paging.

Note: The total number of certificates that exist is returned in the response header field ‘x-total-count’ if the ‘x-
request-total-count’ header on the request is set to ‘true’. The curl option ‘-i’ will emit this to stdout.

Note: A full API reference is available in Swagger GET API

5.2. TLS CA Certificate Retrieval (v1) 35

openapi.html#get--archivist-tlscacertificates

Jitsuin Archivist, Release v0.1.0

5.3 TLS CA Certificate Deletion (v1)

Create the bearer_token and store in a file in a secure local directory with 0600 permissions.

See API Request Authorization and Authentication.

Note: The following example shows use of the API over curl in a bash terminal. The concepts are fully portable to
any other REST client (eg PostMan or python requests)

Set the URL (for example):

$ export URL=https://synsation.1234-5678.nodes.archivist.jitsuin.io

To delete a TLS CA Certificate, issue following request:

$ curl -v -X DELETE \
-H "@$BEARER_TOKEN_FILE" \
-H "Content-type: application/json" \
$URL/archivist/v1/tlscacertificates/47b58286-ff0f-11e9-8f0b-362b9e155667

The response is:

{}

Note: A full API reference is available in Swagger POST API

5.4 TLS CA Certificates Update (v1)

Create the bearer_token and store in a file in a secure local directory with 0600 permissions.

See API Request Authorization and Authentication.

Note: The following example shows use of the API over curl in a bash terminal. The concepts are fully portable to
any other REST client (eg PostMan or python requests)

Set the URL (for example):

$ export URL=https://synsation.1234-5678.nodes.archivist.jitsuin.io

Define the TLS CA certificates parameters to be changed and store in /path/to/jsonfile:

{
"display_name": "new description"

}

Note:

display_name descriptive name of TLS CA certificate

Update the TLS CA Certificate:

36 Chapter 5. TLS CA Certificates Management (v1)

openapi.html#delete--archivist-tlscacertificates

Jitsuin Archivist, Release v0.1.0

$ curl -v -X PATCH \
-H "@$BEARER_TOKEN_FILE" \
-H "Content-type: application/json" \
-d "@/path/to/jsonfile" \
$URL/archivist/v1/tlscacertificates/47b58286-ff0f-11e9-8f0b-362b9e155667

The response is (certificate field shortened for brevity):

{
"identity": "tlscacertificates/3f5be24f-fd1b-40e2-af35-ec7c14c74d53",
"display_name": "Some description",
"certificate": "-----BEGIN CERTIFICATE-----

→˓MIIEBDCCAuygAwIBAgIDAjppMA0GCSqGSIb3DQEBBQUAMEIxCzAJBgNVBAYTAlVT -----END
→˓CERTIFICATE-----"
}

Note: A full API reference is available in Swagger POST API

5.5 TLS CA Certificates Swagger API

GET /archivist/v1/tlscacertificates
List TLS CA certificates

Returns a paginated list of TLS CA certificates

Query Parameters

• order_by (string) – Specify the sort order for the results.

• page_size (integer) – Maximum entries per page

• page_token (string) – The next_page_token returned from a previous list request if
any.

• display_name (string) – Further fields are bound to query parameters and act to filter
the result

Customer friendly name for the TLS CA certificate.

Status Codes

• 200 OK – A successful response.

• 400 Bad Request – Returned when the request is badly formed.

• 401 Unauthorized – Returned when the user is not authenticated to the system.

• 403 Forbidden – Returned when the user is not authorized to read the TLS CA certificate.

• 429 Too Many Requests – Returned when a user exceeds their subscription’s rate limit for
requests.

• 500 Internal Server Error – Returned when the underlying storage system returns an error.

• default – An unexpected error response.

Response JSON Object

5.5. TLS CA Certificates Swagger API 37

openapi.html#patch--archivist-tlscacertificates
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
https://www.rfc-editor.org/rfc/rfc6585#section-4
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

Jitsuin Archivist, Release v0.1.0

• next_page_token (string) – Token to retrieve the next page of results or empty if
there are none.

• tlscacertificates[].display_name (string) – Customer friendly name for
the TLS CA certificate.

• tlscacertificates[].identity (string) – Unique identification for the TLS
CA ertificate, Relative Resource Name

• tlscacertificates[].tlscacertificate (string) – TLS CA Certificate as
base64 string representing the contents of the PEM file

POST /archivist/v1/tlscacertificates
Upload a TLS CA certificate

This request uploads a TLS CA certificate. The display_name is the friendly name.

Request JSON Object

• display_name (string) – Customer friendly name for the TLS CA certificate. (re-
quired)

• tlscacertificate (string) – TLS CA Certificate as string representing the contents
of the PEM file (required)

Status Codes

• 200 OK – A successful response.

• 400 Bad Request – Returned when the request is badly formed.

• 401 Unauthorized – Returned when the user is not authenticated to the system.

• 402 Payment Required – Returned when the user’s quota of certificates has been reached.

• 403 Forbidden – Returned when the user is not authorized to create a tlscacertificate.

• 429 Too Many Requests – Returned when a user exceeds their subscription’s rate limit for
requests.

• 500 Internal Server Error – Returned when the underlying storage system returns an error.

• default – An unexpected error response.

Response JSON Object

• display_name (string) – Customer friendly name for the TLS CA certificate.

• identity (string) – Unique identification for the TLS CA ertificate, Relative Resource
Name

• tlscacertificate (string) – TLS CA Certificate as base64 string representing the
contents of the PEM file

GET /archivist/v1/tlscacertificates/{uuid}
Get a TLS CA certificate

Returns the identified tlscacertificate

Parameters

• uuid (string) – Specify the TLS CA Certificate UUID where tlscacertificates/{uuid}
is the TLS CA Certificate Identity e.g. 08838336-c357-460d-902a-3aba9528dd22 from
Identity tlscacertificates/08838336-c357-460d-902a-3aba9528dd22

Status Codes

38 Chapter 5. TLS CA Certificates Management (v1)

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.3
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
https://www.rfc-editor.org/rfc/rfc6585#section-4
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

Jitsuin Archivist, Release v0.1.0

• 200 OK – A successful response.

• 400 Bad Request – Returned when the request is badly formed.

• 401 Unauthorized – Returned when the user is not authenticated to the system.

• 403 Forbidden – Returned when the user is not authorized to read the TLS CA certificate.

• 404 Not Found – Returned when the identified TLS CA certificate does not exist.

• 429 Too Many Requests – Returned when a user exceeds their subscription’s rate limit for
requests.

• 500 Internal Server Error – Returned when the underlying storage system returns an error.

• default – An unexpected error response.

Response JSON Object

• display_name (string) – Customer friendly name for the TLS CA certificate.

• identity (string) – Unique identification for the TLS CA ertificate, Relative Resource
Name

• tlscacertificate (string) – TLS CA Certificate as base64 string representing the
contents of the PEM file

DELETE /archivist/v1/tlscacertificates/{uuid}
Delete a TLS C Acertificate

Delete the identified tLS CA Certificate

Parameters

• uuid (string) – Specify the TLS CA Certificate UUID where tlscacertificates/{uuid}
is the TLS CA Certificate Identity e.g. 08838336-c357-460d-902a-3aba9528dd22 from
Identity tlscacertificates/08838336-c357-460d-902a-3aba9528dd22

Status Codes

• 200 OK – A successful response.

• 400 Bad Request – Returned when the request is badly formed.

• 401 Unauthorized – Returned when the user is not authenticated to the system.

• 403 Forbidden – Returned when the user is not authorized to delete the TLS CA certificate.

• 404 Not Found – Returned when the identified laccess policy does not exist.

• 429 Too Many Requests – Returned when a user exceeds their subscription’s rate limit for
requests.

• 500 Internal Server Error – Returned when the underlying storage system returns an error.

• default – An unexpected error response.

PATCH /archivist/v1/tlscacertificates/{uuid}
Update a TLS CA certificate’s details

Perform a full or partial update of the identified TLS CA certificate

Parameters

• uuid (string) – Specify the TLS CA Certificate UUID where tlscacertificates/{uuid}
is the TLS CA Certificate Identity e.g. 08838336-c357-460d-902a-3aba9528dd22 from
Identity tlscacertificates/08838336-c357-460d-902a-3aba9528dd22

5.5. TLS CA Certificates Swagger API 39

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://www.rfc-editor.org/rfc/rfc6585#section-4
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://www.rfc-editor.org/rfc/rfc6585#section-4
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

Jitsuin Archivist, Release v0.1.0

Query Parameters

• mask (string) – The mask says exactly which fields are to be updated. This removes the
ambiguity caused by ‘zero’ valued fields. https://grpc-ecosystem.github.io/grpc-gateway/
docs/patch.html

Request JSON Object

• display_name (string) – Customer friendly name for the TLS CA certificate.

• identity (string) – Unique identification for the TLS CA ertificate, Relative Resource
Name

• tlscacertificate (string) – TLS CA Certificate as base64 string representing the
contents of the PEM file

Status Codes

• 200 OK – A successful response.

• 400 Bad Request – Returned when the request is badly formed.

• 401 Unauthorized – Returned when the user is not authenticated to the system.

• 403 Forbidden – Returned when the user is not authorized to update the TLS CA certificate.

• 404 Not Found – Returned when the identified TLS C Acertificate does not exist.

• 429 Too Many Requests – Returned when a user exceeds their subscription’s rate limit for
requests.

• 500 Internal Server Error – Returned when the underlying storage system returns an error.

• default – An unexpected error response.

Response JSON Object

• display_name (string) – Customer friendly name for the TLS CA certificate.

• identity (string) – Unique identification for the TLS CA ertificate, Relative Resource
Name

• tlscacertificate (string) – TLS CA Certificate as base64 string representing the
contents of the PEM file

GET /archivist/v1/tlscacertificates:caps
Get remaining capped resources for TLSCACertificates

Not stable or officially supported. Get remaining capped resources for TLSCACertificates

Status Codes

• 200 OK – A successful response.

• 401 Unauthorized – Returned when the user is not authenticated to the system.

• 429 Too Many Requests – Returned when a user exceeds their subscription’s rate limit for
requests.

• default – An unexpected error response.

Response JSON Object

• caps[].resource_remaining (string) – Number of capped resources remaining

• caps[].resource_type (string) – String identifying the capped resource type

40 Chapter 5. TLS CA Certificates Management (v1)

https://grpc-ecosystem.github.io/grpc-gateway/docs/patch.html
https://grpc-ecosystem.github.io/grpc-gateway/docs/patch.html
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://www.rfc-editor.org/rfc/rfc6585#section-4
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.rfc-editor.org/rfc/rfc6585#section-4

Jitsuin Archivist, Release v0.1.0

GET /archivist/v1/tlscacertificates:openapi
Get OpenAPI spec for TLSCACertificates

Get OpenAPI v2.0 spec for TLSCACertificates

Status Codes

• 200 OK – A successful response.

• 401 Unauthorized – Returned when the user is not authenticated to the system.

• 429 Too Many Requests – Returned when a user exceeds their subscription’s rate limit for
requests.

• default – An unexpected error response.

GET /archivist/v1/tlscacertificates:openapi-ui
Get OpenAPI UI for TLSCACertificates

Get OpenAPI v2.0 UI for TLSCACertificates

Status Codes

• 200 OK – A successful response.

• 401 Unauthorized – Returned when the user is not authenticated to the system.

• 429 Too Many Requests – Returned when a user exceeds their subscription’s rate limit for
requests.

• default – An unexpected error response.

5.5. TLS CA Certificates Swagger API 41

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.rfc-editor.org/rfc/rfc6585#section-4
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.rfc-editor.org/rfc/rfc6585#section-4

Jitsuin Archivist, Release v0.1.0

42 Chapter 5. TLS CA Certificates Management (v1)

CHAPTER

SIX

COMPLIANCE API

The compliance API provides a “trustworthiness” signal for an Asset based on compliance, or otherwise, with Com-
pliance Policies.

6.1 Compliance

By maintaining a complete traceable record of When Who Did What to a Thing, RKVST makes it possible for any
authorized stakeholder to quickly and easily verify that critical processes have been followed and recorded correctly.
And if they weren’t, the record makes it easy to discover where things went wrong and what to fix.

For instance: missed or late maintenance rounds can be detected simply by spotting gaps in the maintenance record;
cyber vulnerable devices can be found by comparing ideal baselines with patching records; out-of-order process exe-
cution and handling violations are visible to all; and back-dating is automatically detectable.

All of this is very valuable in audit and RCA situations after an incident, where there is time to collect together Asset
Records, piece together the important parts, and analyse the meaning.

But what if the same information could be used for real-time decision-making that might avert an incident?

This is where RKVST’s “compliance posture” APIs come in. These take the thinking and processing burden off the
client by providing a single, simple API call to answer the complex question: “given all you know about this asset,
should I trust it right now?”. Additionally, and crucially for sensitive use cases, the yes or no answer comes with a
detailed defensible reason why, which can be inspected by relevant stakeholders during or after the event.

When put all together, this enables high quality decision making based on the best available data, even giving confi-
dence to automated or AI systems to play a full part in operations. Assets can be checked as part of access control
logic, prior to accepting data or commands from them, prior to accepting a shipment, or anything else that is important
to your business.

6.2 Creating Compliance Policies

Compliance Posture is measured against user-defined rule sets called Compliance Policies. Compliance policies are
created once and then Assets can be tested against them at any point in time. For instance, a policy might state that
“MaintenanceAlarm Events must be dealt with and a MaintenanceReport Event recorded with 72 hours”. This creates
a Compliance Policy object in the system against which any asset can be tested as needed.

43

Jitsuin Archivist, Release v0.1.0

6.3 Types of Compliance Policies

RKVST allows users to define Compliance Policies of the following types:

6.3.1 COMPLIANCE_SINCE

This Compliance Policy checks if the time since the last occurence of a specific Event Type has elapsed a
specified threshold. For example “Time since last Maintenance must be less than 72 hours”:

{
"compliance_type": "COMPLIANCE_SINCE",
"description": "Maintenance should be performed every 72h",
"display_name": "Regular Maintenance",
"asset_filter": [

{ "or": ["attributes.arc_location_identity:locations/5eef2b71-35c1-
→˓4376-a166-6c64bfa72f4b"]}

]
"event_display_type": "Maintenance Performed",
"time_period_seconds": "259200"

}

Note:

event_display_type Type of event we want to check with this compliance policy

time_period_seconds The maximum amount of time allowed since a specified event type last occurred
in seconds

6.3.2 COMPLIANCE_CURRENT_OUTSTANDING

This Compliance Policy will only pass if there is an associated answering event addressing a specified
outstanding event, for example defining pairs of Events like “Maintenance Request” and “Maintenance
Performed”. To correlate events define the attribute “arc_correlation_id” in the Event Attributes and set
it to the same value on each pair of events that are to be associated. For example, checking there are
no outstanding “Maintenance Request” Events that are not addressed by an associated “Maintenance
Performed” Event:

{
"compliance_type": "COMPLIANCE_CURRENT_OUTSTANDING",
"description": "There should be no outstanding Maintenance Requests",
"display_name": "Outstanding Maintenance Requests",
"asset_filter": [

{ "or": ["attributes.arc_location_identity:locations/5eef2b71-35c1-
→˓4376-a166-6c64bfa72f4b"]}

]
"event_display_type": "Maintenance Requests",
"closing_event_display_type": "Maintenance Performed"

}

Note:

44 Chapter 6. Compliance API

Jitsuin Archivist, Release v0.1.0

event_display_type Type of event that should be addressed by the event defined in clos-
ing_event_display_type

closing_event_display_type Type of event addressing the event defined in event_display_type

6.3.3 COMPLIANCE_PERIOD_OUTSTANDING

This Compliance Policy will only pass if the time between a pair of correlated events did not exceed the
defined threshold. To correlate events define the attribute “arc_correlation_id” in the Event Attributes and
set it to the same value on each pair of events that are to be associated. For example, a policy checking
that the time between “Maintenance Request” and “Maintenance Performed” Events does not exceed the
maximum 72 hours:

{
"compliance_type": "COMPLIANCE_PERIOD_OUTSTANDING",
"description": "There should be no outstanding Maintenance Requests",
"display_name": "Outstanding Maintenance Requests",
"asset_filter": [

{ "or": ["attributes.arc_location_identity:locations/5eef2b71-35c1-
→˓4376-a166-6c64bfa72f4b"]}

]
"event_display_type": "Maintenance Requests",
"closing_event_display_type": "Maintenance Performed",
"time_period_seconds": "259200"

}

Note:

event_display_type Type of event that should be addressed by the event defined in clos-
ing_event_display_type

closing_event_display_type Type of event addressing the event defined in event_display_type

time_period_seconds Maximum amount of time that can elapse between associated events in seconds

6.3.4 COMPLIANCE_DYNAMIC_TOLERANCE

This Compliance Policy will only pass if the time between a pair of correlated events did not exceed the
defined variability. To correlate events define the attribute “arc_correlation_id” in the Event Attributes and
set it to the same value on each pair of events that are to be associated. For example, a policy checking
that the time between “Maintenance Request” and “Maintenance Performed” Events in the last week does
not exceed a variability of 0.5 standard deviations around the mean:

{
"compliance_type": "COMPLIANCE_DYNAMIC_TOLERANCE",
"description": "Average time between Maintenance Requested/Performed"
"display_name": "outlying Maintenance Requests",
"asset_filter": [

{ "or": ["attributes.arc_location_identity:locations/5eef2b71-35c1-
→˓4376-a166-6c64bfa72f4b"]}

]
"event_display_type": "Maintenance Requests",
"closing_event_display_type": "Maintenance Performed",

(continues on next page)

6.3. Types of Compliance Policies 45

Jitsuin Archivist, Release v0.1.0

(continued from previous page)

"dynamic_window": 604800,
"dynamic_variability": 0.5

}

Note:

event_display_type Type of event that should be addressed by the event defined in clos-
ing_event_display_type

closing_event_display_type Type of event addressing the event defined in event_display_type

dynamic_window number of seconds in the past - only events in this time window are considered.

dynamic variability exceeding this number of standard deviations from the mean will cause compliance
to fail for a particular pair of matching events..

6.3.5 COMPLIANCE_RICHNESS

This Compliance Policy will only pass if the assertions conducted on an attribute value pass. An assertion
is comprised of: an attribute name, a comparison value and an operator to compare with; for example
“rad<7”. The operator can be one of six relational operators: equal to, not equal to, greater than, less than,
greater than or equal to, less than or equal to. [=|!=|>|<|>=|<=]. Assertions are comprised of two lists, an
inner list and outer list. The inner list states that, if any of the assertions pass, then the list is compliant
(OR logic). For example: {“or”: [“rad<7”, “rad=10”]}. The outer list states that, all inner lists need to be
compliant in order for the policy to be compliant (AND logic).

Compliance is a signal, not a perfect answer. Therefore equivilence of floats is exact, not approximate.

{
"compliance_type": "COMPLIANCE_RICHNESS",
"description": "Rad level is less than 7"
"display_name": "Rad limit",
"asset_filter": [

{ "or": ["attributes.arc_location_identity:locations/5eef2b71-35c1-
→˓4376-a166-6c64bfa72f4b"]}

],
"richness_assertions": [

{ "or": ["rad<7"]}
],

}

Note:

richness_assertions The assertions to be made, against asset attributes, to check if the asset is compliant.

46 Chapter 6. Compliance API

Jitsuin Archivist, Release v0.1.0

6.4 Compliance Policy Creation

Create the bearer_token and store in a file in a secure local directory with 0600 permissions.

See API Request Authorization and Authentication.

Note: The following example shows use of the API over curl in a bash terminal. The concepts are fully portable to
any other REST client (eg PostMan or python requests)

Set the URL (for example):

$ export URL=https://synsation.1234-5678.nodes.archivist.jitsuin.io

Create a Policy with:

$ curl -v -X POST \
-H "@$BEARER_TOKEN_FILE" \
-H "Content-type: application/json" \
-d "@/path/to/jsonfile" \
$URL/archivist/v1/compliance_policies

Using data from /path/to/jsonfile in the format described in #Types of Compliance Policies.

Sample response:

{
"identity": "compliance_policies/6a951b62-0a26-4c22-a886-1082297b063b",
"compliance_type": "COMPLIANCE_CURRENT_OUTSTANDING",
"description": "There should be no outstanding Maintenance Requests",
"display_name": "Outstanding Maintenance Requests",
"asset_filter": [

{ "or": ["attributes.arc_location_identity:locations/5eef2b71-35c1-
→˓4376-a166-6c64bfa72f4b"]}

]
"event_display_type": "Maintenance Requests",
"closing_event_display_type": "Maintenance Performed",
"time_period_seconds": "259200"

}

6.5 Compliance Checking

The compliancev1 endpoint reports on the status of an Asset’s Compliance with Compliance Policies.

Query the endpoint:

$ curl -v -X GET \
-H "@$BEARER_TOKEN_FILE" \
$URL/archivist/v1/compliance/assets/6a951b62-0a26-4c22-a886-1082297b063b

or if determining compliance at some historical date:

$ curl -v -X GET \
-H "@$BEARER_TOKEN_FILE" \
$URL/archivist/v1/compliance/assets/6a951b62-0a26-4c22-a886-1082297b063b?

→˓compliant_at=2019-11-27T14:44:19Z

6.4. Compliance Policy Creation 47

Jitsuin Archivist, Release v0.1.0

The response is:

{
"compliant": true,
"compliance": [

{
"compliance_policy_identity": "compliance_policies/0000-0000-000000000-

→˓00000000",
"compliant": true,
"reason": ""

}
],
"compliant_at": "2019-11-27T14:44:19Z"

}

Note:

compliant Overall compliance status, false if any Compliance Policy is not “compliant”

compliant_at Timestamp at which compliance was determined

The response contains a list of Compliance Statements.

Each member of the list has the following attributes:

compliance_policy_identity The identity of the Compliance Policy this statement refers to

compliant Compliance status for this Compliance Policy

reason description of non-compliance (only if compliant is false)

See Swagger GET API

6.6 Compliance Swagger API

GET /archivist/v1/compliance/assets/{uuid}
List all compliance status relevant to an asset

Parameters

• uuid (string) – Specify the Asset UUID where assets/{uuid} is the Asset Identity e.g.
add30235-1424-4fda-840a-d5ef82c4c96f from Identity assets/add30235-1424-4fda-840a-
d5ef82c4c96f

Query Parameters

• page_size (integer) – Maximum results per page.

• page_token (string) – The next_page_token returned from a previous list request if
any.

• order_by (string) – Specify the sort order for the results.

• compliant_at (string) – timestamp at which compliance is determined

time at which compliance is determined

Status Codes

• 200 OK – A successful response.

48 Chapter 6. Compliance API

openapi.html#get--archivist-v1-compliance
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

Jitsuin Archivist, Release v0.1.0

• 206 Partial Content – The number of compliance statements exceeds the servers limit.

• 401 Unauthorized – Returned when the user is not authenticated to the system.

• 403 Forbidden – Returned when the user is not authorized to access the requested resource.

• 404 Not Found – Returned when the asset with the id does not exist.

• 429 Too Many Requests – Returned when a user exceeds their subscription’s rate limit for
requests.

• default – An unexpected error response.

Response JSON Object

• compliance[].compliance_policy_identity (string) – identity of the
compliance policy (read only)

• compliance[].compliant (boolean) – status of compliance against the compliance
policy

• compliance[].reason (string) – reason for non-compliance (read only)

• compliant (boolean) – overall compliance status for the asset

• compliant_at (string) – time at which compliance is determined (read only)

• next_page_token (string) – Token to retrieve the next page of results or empty if
there are none.

GET /archivist/v1/compliance_policies

Query Parameters

• page_size (integer) – Maximum results per page.

• page_token (string) – The next_page_token returned from a previous list request if
any.

• order_by (string) – Specify the sort order for the results.

• compliance_type (string) – policy type

• description (string) – Customer description of the compliance policy.

• display_name (string) – Customer friendly name for the compliance policy.

Status Codes

• 200 OK – A successful response.

• 401 Unauthorized – Returned when the user is not authenticated to the system.

• 403 Forbidden – Returned when the user is not authorized to access the requested resource.

• 404 Not Found – Returned when the asset with the id does not exist.

• 429 Too Many Requests – Returned when a user exceeds their subscription’s rate limit for
requests.

• default – An unexpected error response.

Response JSON Object

• compliance_policies[].asset_filter[].or[] (string) –

• compliance_policies[].closing_event_display_type (string) –

• compliance_policies[].compliance_type (string) –

6.6. Compliance Swagger API 49

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.7
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://www.rfc-editor.org/rfc/rfc6585#section-4
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://www.rfc-editor.org/rfc/rfc6585#section-4

Jitsuin Archivist, Release v0.1.0

• compliance_policies[].description (string) –

• compliance_policies[].display_name (string) –

• compliance_policies[].dynamic_variability (number) –

• compliance_policies[].dynamic_window (string) –

• compliance_policies[].event_display_type (string) –

• compliance_policies[].identity (string) –

• compliance_policies[].richness_assertions[].or[] (string) –

• compliance_policies[].time_period_seconds (string) –

• next_page_token (string) –

POST /archivist/v1/compliance_policies

Request JSON Object

• asset_filter[].or[] (string) –

• closing_event_display_type (string) – this is the correlated event type (read
only)

• compliance_type (string) –

• description (string) – Customer description of the compliance policy. (read only)

• display_name (string) – display name (read only)

• dynamic_variability (number) – number of standard deviations - required for DY-
NAMIC_TOLERANCE (read only)

• dynamic_window (string) – valid period for policy - required for DY-
NAMIC_TOLERANCE (read only)

• event_display_type (string) – this is the target event_display_type - always re-
quired (read only)

• richness_assertions[].or[] (string) –

• time_period_seconds (string) – time delta - required for SINCE and PE-
RIOD_OUTSTANDING (read only)

Status Codes

• 200 OK – A successful response.

• 401 Unauthorized – Returned when the user is not authenticated to the system.

• 402 Payment Required – Returned when the user’s quota of compliance policies has been
reached.

• 403 Forbidden – Returned when the user is not authorized to access the requested resource.

• 404 Not Found – Returned when the asset with the id does not exist.

• 429 Too Many Requests – Returned when a user exceeds their subscription’s rate limit for
requests.

• default – An unexpected error response.

Response JSON Object

• asset_filter[].or[] (string) –

50 Chapter 6. Compliance API

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.3
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://www.rfc-editor.org/rfc/rfc6585#section-4

Jitsuin Archivist, Release v0.1.0

• closing_event_display_type (string) –

• compliance_type (string) –

• description (string) –

• display_name (string) –

• dynamic_variability (number) –

• dynamic_window (string) –

• event_display_type (string) –

• identity (string) –

• richness_assertions[].or[] (string) –

• time_period_seconds (string) –

GET /archivist/v1/compliance_policies/{uuid}

Parameters

• uuid (string) – Specify the Compliance Policy UUID where compli-
ance_policies/{uuid} is the Compliance Policy Identity e.g. add30235-1424-4fda-840a-
d5ef82c4c96f from Identity compliance_policies/add30235-1424-4fda-840a-d5ef82c4c96f

Status Codes

• 200 OK – A successful response.

• 401 Unauthorized – Returned when the user is not authenticated to the system.

• 403 Forbidden – Returned when the user is not authorized to access the requested resource.

• 404 Not Found – Returned when the asset with the id does not exist.

• 429 Too Many Requests – Returned when a user exceeds their subscription’s rate limit for
requests.

• default – An unexpected error response.

Response JSON Object

• asset_filter[].or[] (string) –

• closing_event_display_type (string) –

• compliance_type (string) –

• description (string) –

• display_name (string) –

• dynamic_variability (number) –

• dynamic_window (string) –

• event_display_type (string) –

• identity (string) –

• richness_assertions[].or[] (string) –

• time_period_seconds (string) –

DELETE /archivist/v1/compliance_policies/{uuid}

Parameters

6.6. Compliance Swagger API 51

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://www.rfc-editor.org/rfc/rfc6585#section-4

Jitsuin Archivist, Release v0.1.0

• uuid (string) – Specify the Compliance Policy UUID where compli-
ance_policies/{uuid} is the Compliance Policy Identity e.g. add30235-1424-4fda-840a-
d5ef82c4c96f from Identity compliance_policies/add30235-1424-4fda-840a-d5ef82c4c96f

Status Codes

• 200 OK – A successful response.

• 401 Unauthorized – Returned when the user is not authenticated to the system.

• 403 Forbidden – Returned when the user is not authorized to access the requested resource.

• 404 Not Found – Returned when the asset with the id does not exist.

• 429 Too Many Requests – Returned when a user exceeds their subscription’s rate limit for
requests.

• default – An unexpected error response.

Response JSON Object

• asset_filter[].or[] (string) –

• closing_event_display_type (string) –

• compliance_type (string) –

• description (string) –

• display_name (string) –

• dynamic_variability (number) –

• dynamic_window (string) –

• event_display_type (string) –

• identity (string) –

• richness_assertions[].or[] (string) –

• time_period_seconds (string) –

GET /archivist/v1/compliance_policies:caps
Get remaining capped resources for CompliancePolicies

Not stable or officially supported. Get remaining capped resources for CompliancePolicies

Status Codes

• 200 OK – A successful response.

• 401 Unauthorized – Returned when the user is not authenticated to the system.

• 429 Too Many Requests – Returned when a user exceeds their subscription’s rate limit for
requests.

• default – An unexpected error response.

Response JSON Object

• caps[].resource_remaining (string) – Number of capped resources remaining

• caps[].resource_type (string) – String identifying the capped resource type

GET /archivist/v1/compliance_policies:openapi
Get OpenAPI spec for Compliance

Get OpenAPI v2.0 spec for Compliance

52 Chapter 6. Compliance API

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://www.rfc-editor.org/rfc/rfc6585#section-4
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.rfc-editor.org/rfc/rfc6585#section-4

Jitsuin Archivist, Release v0.1.0

Status Codes

• 200 OK – A successful response.

• 401 Unauthorized – Returned when the user is not authenticated to the system.

• 429 Too Many Requests – Returned when a user exceeds their subscription’s rate limit for
requests.

• default – An unexpected error response.

GET /archivist/v1/compliance_policies:openapi-ui
Get OpenAPI UI for Compliance

Get OpenAPI v2.0 UI for Compliance

Status Codes

• 200 OK – A successful response.

• 401 Unauthorized – Returned when the user is not authenticated to the system.

• 429 Too Many Requests – Returned when a user exceeds their subscription’s rate limit for
requests.

• default – An unexpected error response.

6.6. Compliance Swagger API 53

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.rfc-editor.org/rfc/rfc6585#section-4
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.rfc-editor.org/rfc/rfc6585#section-4

Jitsuin Archivist, Release v0.1.0

54 Chapter 6. Compliance API

CHAPTER

SEVEN

IDENTITY AND ACCESS MANAGEMENT (V1)

Organisational access to the various resources in Jitsuin Archivist is managed by the subjects and access_policies
endpoints.

The subjects endpoint manages the granting of access to third parties. The access_policies endpoint manages which
rights have been granted.

7.1 IAM Access Policies API (v1)

7.1.1 IAM Access Policies Creation (v1)

Create the bearer_token and store in a file in a secure local directory with 0600 permissions.

See API Request Authorization and Authentication.

Note: The following example shows use of the API over curl in a bash terminal. The concepts are fully portable to
any other REST client (eg PostMan or python requests)

Set the URL (for example):

$ export URL=https://synsation.1234-5678.nodes.archivist.jitsuin.io

Define the access_policies parameters and store in /path/to/jsonfile:

{
"display_name": "Friendly name of the policy",
"description": "Description of the policy",
"filters": [

{ "or": [
"attributes.arc_home_location_identity=locations/5ea815f0-4de1-4a84-9377-

→˓701e880fe8ae",
"attributes.arc_home_location_identity=locations/27eed70b-9e2b-4db1-b8c4-

→˓e36505350dcc"
]},
{ "or": [

"attributes.arc_display_type=Valve",
"attributes.arc_display_type=Pump"

]},
{ "or": [

"attributes.ext_vendor_name=SynsationIndustries"
]}

(continues on next page)

55

Jitsuin Archivist, Release v0.1.0

(continued from previous page)

],
"access_permissions": [

{
"asset_attributes_read": ["toner_colour", "toner_type"],
"asset_attributes_write":["toner_colour"],
"behaviours": ["Attachments", "Firmware", "Maintenance", "RecordEvidence

→˓"],
"event_arc_display_type_read": ["toner_type", "toner_colour"],
"event_arc_display_type_write": ["toner_replacement"],
"include_attributes": ["arc_display_name", "arc_display_type", "arc_

→˓firmware_version"],
"subjects": [

"subjects/6a951b62-0a26-4c22-a886-1082297b063b",
"subjects/a24306e5-dc06-41ba-a7d6-2b6b3e1df48d"

],
"user_attributes": [

{"or": ["group:maintainers", "group:supervisors"]}
]

}
]

}

Note:

display_name required Friendly name for the policy. Displayed in the Archivist GUI.

description Description of the policy.

filters list of filters of asset attributes to match.

access_permissions A list specifying which subjects and users get what rights for the matching assets.

behaviours list of behaviours allowed to update the asset for the matching subjects and users. For all behaviours
use [“*”]

At least one of the following fields is required.

asset_attributes_read asset attributes named in this list will be visible.

asset_attributes_write asset attributes named in this list will be writable. Note they can only be read if also
listed in asset_attributes_read.

event_arc_display_type_read events which have an event attribute arc_display_type with a value from this
list will be visible. Matches due to event_arc_display_type_read are OR’d with matches due to in-
clude_attributes. To share all events with the specified users for any asset matching the filters, use [“*”].
Using “*” means the event can have any value in arc_display_type or can omit it all together.

event_arc_display_type_write events which have an event attribute arc_display_type with a value from this
list will be WRITABLE. Matches due to event_arc_display_type_write are OR’d with matches due to
include_attributes. To share all events with the specified users for any asset matching the filters, use [“*”
]. Using “*” means the event can set any value in arc_display_type or can omit it all together.

include_attributes list of attributes to share with the matching subjects and be visible to the matching users.
For all attributes use [“*”]. matches due to include_attributes are OR’d with event_arc_display_type_read

subjects list of subject identities of subjects who are to be granted these rights

user_attributes list of user attribute filters that specifies who is allowed to see the assets matching the policy
filters and use those assets behaviours

56 Chapter 7. Identity and Access Management (v1)

Jitsuin Archivist, Release v0.1.0

Create the access policy:

$ curl -v -X POST \
-H "@$BEARER_TOKEN_FILE" \
-H "Content-type: application/json" \
-d "@/path/to/jsonfile" \
$URL/archivist/iam/v1/access_policies

The response is:

{
"identity": "access_policies/3f5be24f-fd1b-40e2-af35-ec7c14c74d53",
"display_name": "Friendly name of the policy",
"description": "Description of the policy",
"filters": [

{"or": [
"attributes.arc_home_location_identity=locations/5ea815f0-4de1-4a84-9377-

→˓701e880fe8ae",
"attributes.arc_home_location_identity=locations/27eed70b-9e2b-4db1-b8c4-

→˓e36505350dcc"
]},
{"or": [

"attributes.arc_display_type=Valve",
"attributes.arc_display_type=Pump"

]},
{"or": [

"attributes.ext_vendor_name=SynsationIndustries"
]}

],
"access_permissions": [

{
"asset_attributes_read": ["toner_colour", "toner_type"],
"asset_attributes_write":["toner_colour"],
"behaviours": ["Attachments", "Firmware", "Maintenance", "RecordEvidence

→˓"],
"event_arc_display_type_read": ["toner_type", "toner_colour"],
"event_arc_display_type_write": ["toner_replacement"],
"include_attributes": ["arc_display_name", "arc_display_type", "arc_

→˓firmware_version"],
"subjects": [

"subjects/6a951b62-0a26-4c22-a886-1082297b063b",
"subjects/a24306e5-dc06-41ba-a7d6-2b6b3e1df48d"

],
"user_attributes": [

{"or": ["group:maintainers", "group:supervisors"]}
]

}
]

}

Note: A full API reference is available in Swagger POST API

7.1. IAM Access Policies API (v1) 57

openapi.html#post--archivist-iam-v1-access_policies

Jitsuin Archivist, Release v0.1.0

7.1.2 IAM Access Policies Retrieval (v1)

Create the bearer_token and store in a file in a secure local directory with 0600 permissions.

See API Request Authorization and Authentication.

Note: The following example shows use of the API over curl in a bash terminal. The concepts are fully portable to
any other REST client (eg PostMan or python requests)

Set the URL (for example):

$ export URL=https://synsation.1234-5678.nodes.archivist.jitsuin.io

IAM access policy records in Jitsuin Archivist are tokenized at creation time and referred to in all API calls and smart
contracts throughout the system by a unique identity of the form:

access_policies/12345678-90ab-cdef-1234-567890abcdef.

If you do not know the access_policy’s identity you can fetch IAM access policy records using other information you
do know, such as the access_policy’s name.

Fetch all IAM access_policies (v1)

To fetch all IAM access_policies records, simply GET the iam/access_policies resource:

$ curl -v -X GET \
-H "@$BEARER_TOKEN_FILE" \
$URL/archivist/iam/v1/access_policies

Fetch specific IAM access Policy by identity (v1)

If you know the unique identity of the IAM access policy Record simply GET the resource:

$ curl -v -X GET \
-H "@$BEARER_TOKEN_FILE" \
$URL/archivist/iam/v1/access_policies/6a951b62-0a26-4c22-a886-1082297b063b

Fetch IAM Access Policies by name (v1)

To fetch all IAM access_policies with a specific name, GET the iam/access_policies resource and filter on
display_name:

$ curl -g -v -X GET \
-H "@$BEARER_TOKEN_FILE" \
$URL/archivist/iam/v1/access_policies?display_name=Some%20description

Each of these calls returns a list of matching IAM access_policies records in the form:

{
"access_policies": [

{
"identity": "access_policies/6a951b62-0a26-4c22-a886-1082297b063b",

(continues on next page)

58 Chapter 7. Identity and Access Management (v1)

Jitsuin Archivist, Release v0.1.0

(continued from previous page)

"display_name": "Name to display",
"description": "Description of the policy",
"filters": [

{"or": [
"attributes.arc_home_location_identity=locations/5ea815f0-4de1-

→˓4a84-9377-701e880fe8ae",
"attributes.arc_home_location_identity=locations/27eed70b-9e2b-

→˓4db1-b8c4-e36505350dcc"
]},
{"or": [

"attributes.arc_display_type=Valve",
"attributes.arc_display_type=Pump"

]},
{"or": [

"attributes.ext_vendor_name=SynsationIndustries"
]}

],
"access_permissions": [

{
"asset_attributes_read": ["toner_colour", "toner_type"],
"asset_attributes_write":["toner_colour"],
"behaviours": ["Attachments", "Firmware", "Maintenance",

→˓"RecordEvidence"],
"event_arc_display_type_read": ["toner_type", "toner_colour"],
"event_arc_display_type_write": ["toner_replacement"],
"include_attributes": ["arc_display_name", "arc_display_type",

→˓"arc_firmware_version"],
"subjects": [

"subjects/6a951b62-0a26-4c22-a886-1082297b063b",
"subjects/a24306e5-dc06-41ba-a7d6-2b6b3e1df48d"

],
"user_attributes": [

{"or": ["group:maintainers", "group:supervisors"]}
]

}
]

},
{

"identity": "access_policies/12345678-0a26-4c22-a886-1082297b063b",
"display_name": "Some other description",
"filters": [

{"or": ["attributes.arc_display_type=door_access_reader"]}
],
"access_permissions": [

{
"asset_attributes_read": ["toner_colour", "toner_type"],
"asset_attributes_write":["toner_colour"],
"behaviours": ["Attachments", "Firmware", "Maintenance",

→˓"RecordEvidence"],
"event_arc_display_type_read": ["toner_type", "toner_colour"],
"event_arc_display_type_write": ["toner_replacement"],
"include_attributes": ["arc_display_name", "arc_display_type",

→˓"arc_firmware_version"],
"subjects": [

"subjects/6a951b62-0a26-4c22-a886-1082297b063b",
"subjects/a24306e5-dc06-41ba-a7d6-2b6b3e1df48d"

],
(continues on next page)

7.1. IAM Access Policies API (v1) 59

Jitsuin Archivist, Release v0.1.0

(continued from previous page)

"user_attributes": [
{"or": ["group:maintainers", "group:supervisors"]}

]
}

]
}

]
}

Note: The number of records returned has a maximum limit. If this limit is too small then one must use API Request
Paging.

Note: The total number of assets that exist is returned in the response header field ‘x-total-count’ if the ‘x-request-
total-count’ header on the request is set to ‘true’. The curl option ‘-i’ will emit this to stdout.

Note: A full API reference is available in Swagger GET API

7.1.3 IAM Access Policy Deletion (v1)

Create the bearer_token and store in a file in a secure local directory with 0600 permissions.

See API Request Authorization and Authentication.

Note: The following example shows use of the API over curl in a bash terminal. The concepts are fully portable to
any other REST client (eg PostMan or python requests)

Set the URL (for example):

$ export URL=https://synsation.1234-5678.nodes.archivist.jitsuin.io

To delete an IAM access policy, issue following request:

$ curl -v -X DELETE \
-H "@$BEARER_TOKEN_FILE" \
-H "Content-type: application/json" \
$URL/archivist/iam/v1/access_policies/47b58286-ff0f-11e9-8f0b-362b9e155667

The response is:

{}

Note: A full API reference is available in Swagger DELETE API

60 Chapter 7. Identity and Access Management (v1)

openapi.html#get--archivist-iam-v1-access_policies
openapi.html#delete--archivist-iam-v1-identity

Jitsuin Archivist, Release v0.1.0

7.1.4 IAM Access Policies Update (v1)

Create the bearer_token and store in a file in a secure local directory with 0600 permissions.

See API Request Authorization and Authentication.

Note: The following example shows use of the API over curl in a bash terminal. The concepts are fully portable to
any other REST client (eg PostMan or python requests)

Set the URL (for example):

$ export URL=https://synsation.1234-5678.nodes.archivist.jitsuin.io

Define the access_policies parameters to be changed and store in /path/to/jsonfile:

{
"filters": [

{"or": [
"attributes.arc_home_location_identity=locations/5ea815f0-4de1-4a84-9377-

→˓701e880fe8ae",
"attributes.arc_home_location_identity=locations/27eed70b-9e2b-4db1-b8c4-

→˓e36505350dcc"
]},
{"or": [

"attributes.arc_display_type=Valve",
"attributes.arc_display_type=Pump"

]},
{"or": [

"attributes.ext_vendor_name=SynsationIndustries"
]}

],
"access_permissions": [

{
"asset_attributes_read": ["toner_colour", "toner_type"],
"asset_attributes_write":["toner_colour"],
"behaviours": ["Attachments", "Firmware", "Maintenance", "RecordEvidence

→˓"],
"event_arc_display_type_read": ["toner_type", "toner_colour"],
"event_arc_display_type_write": ["toner_replacement"],
"include_attributes": ["arc_display_name", "arc_display_type", "arc_

→˓firmware_version"],
"subjects": [

"subjects/6a951b62-0a26-4c22-a886-1082297b063b",
"subjects/a24306e5-dc06-41ba-a7d6-2b6b3e1df48d"

],
"user_attributes": [

{"or": ["group:maintainers", "group:supervisors"]}
]

}
]

}

Note:

filters list of asset attributes filters.

access_permissions A list specifying which subjects and users get what rights for the matching assets.

7.1. IAM Access Policies API (v1) 61

Jitsuin Archivist, Release v0.1.0

behaviours list of behaviours allowed to update the asset for the matching subjects and users. For all behaviours
use [“*”]

asset_attributes_read asset attributes named in this list will be visible.

asset_attributes_write asset attributes named in this list will be writable. Note they can only be read if also
listed in asset_attributes_read.

event_arc_display_type_read events which have an event attribute arc_display_type with a value from this
list will be visible. Matches due to event_arc_display_type_read are OR’d with matches due to in-
clude_attributes. To share all events with the specified users for any asset matching the filters, use [“*”].
Using “*” means the event can have any value in arc_display_type or can omit it all together.

event_arc_display_type_write events which have an event attribute arc_display_type with a value from this
list will be WRITABLE. Matches due to event_arc_display_type_write are OR’d with matches due to
include_attributes. To share all events with the specified users for any asset matching the filters, use [“*”
]. Using “*” means the event can set any value in arc_display_type or can omit it all together.

include_attributes list of attributes to share with the matching subjects and be visible to the matching users.
For all attributes use [“*”]. matches due to include_attributes are OR’d with event_arc_display_type_read

subjects list of subject identities of subjects who are to be granted these rights

user_attributes list of user attribute filters that specifies who is allowed to see the assets matching the policy
filters and use those assets behaviours

Update the access policy:

$ curl -v -X PATCH \
-H "@$BEARER_TOKEN_FILE" \
-H "Content-type: application/json" \
-d "@/path/to/jsonfile" \
$URL/archivist/iam/v1/access_policies/47b58286-ff0f-11e9-8f0b-362b9e155667

The response is:

{
"identity": "access_policies/3f5be24f-fd1b-40e2-af35-ec7c14c74d53",
"display_name": "Friendly name of the policy",
"description": "Description of the policy",
"filters": [

{"or": [
"attributes.arc_home_location_identity=locations/5ea815f0-4de1-4a84-9377-

→˓701e880fe8ae",
"attributes.arc_home_location_identity=locations/27eed70b-9e2b-4db1-b8c4-

→˓e36505350dcc"
]},
{"or": [

"attributes.arc_display_type=Valve",
"attributes.arc_display_type=Pump"

]},
{"or": [

"attributes.ext_vendor_name=SynsationIndustries"
]}

],
"access_permissions": [

{
"asset_attributes_read": ["toner_colour", "toner_type"],
"asset_attributes_write":["toner_colour"],

(continues on next page)

62 Chapter 7. Identity and Access Management (v1)

Jitsuin Archivist, Release v0.1.0

(continued from previous page)

"behaviours": ["Attachments", "Firmware", "Maintenance", "RecordEvidence
→˓"],

"event_arc_display_type_read": ["toner_type", "toner_colour"],
"event_arc_display_type_write": ["toner_replacement"],
"include_attributes": ["arc_display_name", "arc_display_type", "arc_

→˓firmware_version"],
"subjects": [

"subjects/6a951b62-0a26-4c22-a886-1082297b063b",
"subjects/a24306e5-dc06-41ba-a7d6-2b6b3e1df48d"

],
"user_attributes": [

{"or": ["group:maintainers", "group:supervisors"]}
]

}
]

}

Note: A full API reference is available in Swagger PATCH API

7.1.5 IAM Access Policies matching Assets (v1)

Create the bearer_token and store in a file in a secure local directory with 0600 permissions.

See API Request Authorization and Authentication.

Note: The following example shows use of the API over curl in a bash terminal. The concepts are fully portable to
any other REST client (eg PostMan or python requests)

Set the URL (for example):

$ export URL=https://synsation.1234-5678.nodes.archivist.jitsuin.io

IAM access policy records in Jitsuin Archivist are tokenized at creation time and referred to in all API calls and smart
contracts throughout the system by a unique identity of the form:

access_policies/12345678-90ab-cdef-1234-567890abcdef.

If you do not know the access_policy’s identity you can fetch IAM access policy records using other information you
do know, such as the access_policy’s name.

Fetch all Assets matching specific IAM access_policy (v1)

If you know the unique identity of the IAM access policy Record simply GET the resource:

$ curl -v -X GET \
-H "@$BEARER_TOKEN_FILE" \
$URL/archivist/iam/v1/access_policies/6a951b62-0a26-4c22-a886-1082297b063b/assets

Each of these calls returns a list of matching Asset records in the form:

7.1. IAM Access Policies API (v1) 63

openapi.html#patch--archivist-iam-v1-identity

Jitsuin Archivist, Release v0.1.0

{
"assets": [

{
"identity": "assets/6a951b62-0a26-4c22-a886-1082297b063b",
"behaviours": [

"Firmware",
"Maintenance",
"RecordEvidence",
"LocationUpdate",
"Attachments"

],
"attributes": {

"arc_display_type": "Pump",
"arc_firmware_version": "1.0",
"arc_home_location_identity": "locations/866790d8-4ed6-4cc9-8f60-

→˓07672609b331",
"arc_serial_number": "vtl-x4-07",
"arc_description": "Pump at A603 North East",
"arc_display_name": "tcl.ccj.003",
"some_custom_attribute": "value",
"arc_attachments": [

{
"arc_display_name": "arc_primary_image",
"arc_attachment_identity": "blobs/87b1a84c-1c6f-442b-923e-

→˓a97516f4d275",
"arc_hash_alg": "SHA256",
"arc_hash_value":

→˓"246c316e2cd6971ce5c83a3e61f9880fa6e2f14ae2976ee03500eb282fd03a60"
}

]
},
"confirmation_status": "CONFIRMED",
"tracked": "TRACKED"
}

]
}

Fetch all IAM access_policies matching specific Asset (v1)

If you know the unique identity of the Asset Record simply GET matching policies:

$ curl -v -X GET \
-H "@$BEARER_TOKEN_FILE" \
$URL/archivist/iam/v1/assets/6a951b62-0a26-4c22-a886-1082297b063b/access_policies

Each of these calls returns a list of matching IAM access_policies records in the form:

{
"access_policies": [

{
"identity": "access_policies/6a951b62-0a26-4c22-a886-1082297b063b",
"display_name": "Some description",
"filters": [

{ "or": [
"attributes.arc_home_location_identity=locations/5ea815f0-4de1-

→˓4a84-9377-701e880fe8ae",

(continues on next page)

64 Chapter 7. Identity and Access Management (v1)

Jitsuin Archivist, Release v0.1.0

(continued from previous page)

"attributes.arc_home_location_identity=locations/27eed70b-9e2b-
→˓4db1-b8c4-e36505350dcc",

]},
{ "or": [

"attributes.arc_display_type=Valve",
"attributes.arc_display_type=Pump"

]},
{ "or": [

"attributes.ext_vendor_name=SynsationIndustries"
]}

],
"access_permissions": [

{
"subjects": [

"subjects/6a951b62-0a26-4c22-a886-1082297b063b",
"subjects/a24306e5-dc06-41ba-a7d6-2b6b3e1df48d"

],
"behaviours": ["Attachments", "Firmware", "Maintenance",

→˓"RecordEvidence"],
"include_attributes": ["arc_display_name", "arc_display_type",

→˓"arc_firmware_version"],
"user_attributes": [

{"or": ["group:maintainers", "group:supervisors"]}
]

}
]

},
{

"identity": "access_policies/12345678-0a26-4c22-a886-1082297b063b",
"display_name": "Some other description",
"filters": [

{ "or": ["attributes.arc_display_type=door_access_reader"]}
],
"access_permissions": [

{
"subjects": [

"subjects/6a951b62-0a26-4c22-a886-1082297b063b",
"subjects/a24306e5-dc06-41ba-a7d6-2b6b3e1df48d"

],
"behaviours": ["Attachments", "Maintenance", "RecordEvidence"],
"include_attributes": ["arc_display_name", "arc_display_type"],
"user_attributes": [

{"or": ["group:maintainers", "group:supervisors"]}
]

}
]

}
]

}

Note: The number of records returned has a maximum limit. If this limit is too small then one must use API Request
Paging.

A full API reference is available in Swagger GET API

7.1. IAM Access Policies API (v1) 65

openapi.html#get--archivist-iam-v1-identity-assets

Jitsuin Archivist, Release v0.1.0

7.1.6 IAM access Policies Swagger API

GET /archivist/iam/v1/access_policies
List access policies

Returns a paginated list of access_policies

Query Parameters

• order_by (string) – Specify the sort order for the results.

• page_size (integer) – Maximum entries per page

• page_token (string) – The next_page_token returned from a previous list request if
any.

• display_name (string) – Further fields are bound to query parameters and act to filter
the result

Customer friendly name for the access policy.

• description (string) – Customer description of the access policy.

Status Codes

• 200 OK – A successful response.

• 400 Bad Request – Returned when the request is badly formed.

• 401 Unauthorized – Returned when the user is not authenticated to the system.

• 403 Forbidden – Returned when the user is not authorized to list the access policy.

• 429 Too Many Requests – Returned when a user exceeds their subscription’s rate limit for
requests.

• 500 Internal Server Error – Returned when the underlying storage system returns an error.

• default – An unexpected error response.

Response JSON Object

• access_policies[].access_permissions[].asset_attributes_read[]
(string) –

• access_policies[].access_permissions[].asset_attributes_write[]
(string) –

• access_policies[].access_permissions[].behaviours[] (string) –

• access_policies[].access_permissions[].event_arc_display_type_read[]
(string) –

• access_policies[].access_permissions[].event_arc_display_type_write[]
(string) –

• access_policies[].access_permissions[].include_attributes[]
(string) –

• access_policies[].access_permissions[].subjects[] (string) –

• access_policies[].access_permissions[].user_attributes[].
or[] (string) –

• access_policies[].description (string) – Customer description for the ac-
cess policy.

66 Chapter 7. Identity and Access Management (v1)

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
https://www.rfc-editor.org/rfc/rfc6585#section-4
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

Jitsuin Archivist, Release v0.1.0

• access_policies[].display_name (string) – Customer friendly name for the
access policy.

• access_policies[].filters[].or[] (string) –

• access_policies[].identity (string) – Unique identification for the access
policy, Relative Resource Name

• access_policies[].tenant (string) – Tenant id

• next_page_token (string) – Token to retrieve the next page of results or empty if
there are none.

POST /archivist/iam/v1/access_policies
Create an access policy

This request creates a new access policy. The display_name is the friendly name.

Request JSON Object

• access_permissions[].asset_attributes_read[] (string) –

• access_permissions[].asset_attributes_write[] (string) –

• access_permissions[].behaviours[] (string) –

• access_permissions[].event_arc_display_type_read[] (string) –

• access_permissions[].event_arc_display_type_write[] (string) –

• access_permissions[].include_attributes[] (string) –

• access_permissions[].subjects[] (string) –

• access_permissions[].user_attributes[].or[] (string) –

• description (string) – Customer description for the access policy.

• display_name (string) – Customer friendly name for the access policy. (required)

• filters[].or[] (string) –

Status Codes

• 200 OK – A successful response.

• 400 Bad Request – Returned when the request is badly formed.

• 401 Unauthorized – Returned when the user is not authenticated to the system.

• 402 Payment Required – Returned when the user’s quota of access policies has been reached.

• 403 Forbidden – Returned when the user is not authorized to create an access policy.

• 429 Too Many Requests – Returned when a user exceeds their subscription’s rate limit for
requests.

• 500 Internal Server Error – Returned when the underlying storage system returns an error.

• default – An unexpected error response.

Response JSON Object

• access_permissions[].asset_attributes_read[] (string) –

• access_permissions[].asset_attributes_write[] (string) –

• access_permissions[].behaviours[] (string) –

• access_permissions[].event_arc_display_type_read[] (string) –

7.1. IAM Access Policies API (v1) 67

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.3
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
https://www.rfc-editor.org/rfc/rfc6585#section-4
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

Jitsuin Archivist, Release v0.1.0

• access_permissions[].event_arc_display_type_write[] (string) –

• access_permissions[].include_attributes[] (string) –

• access_permissions[].subjects[] (string) –

• access_permissions[].user_attributes[].or[] (string) –

• description (string) – Customer description for the access policy.

• display_name (string) – Customer friendly name for the access policy.

• filters[].or[] (string) –

• identity (string) – Unique identification for the access policy, Relative Resource
Name

• tenant (string) – Tenant id

GET /archivist/iam/v1/access_policies/{uuid}
Get an access policy

Returns the identified access policy

Parameters

• uuid (string) – Specify the Access Policy UUID where access_policies/{uuid} is
the Access Policy Identity e.g. add30235-1424-4fda-840a-d5ef82c4c96f from Identity
access_policies/add30235-1424-4fda-840a-d5ef82c4c96f

Status Codes

• 200 OK – A successful response.

• 400 Bad Request – Returned when the request is badly formed.

• 401 Unauthorized – Returned when the user is not authenticated to the system.

• 403 Forbidden – Returned when the user is not authorized to read the access policy.

• 404 Not Found – Returned when the identified access policy does not exist.

• 429 Too Many Requests – Returned when a user exceeds their subscription’s rate limit for
requests.

• 500 Internal Server Error – Returned when the underlying storage system returns an error.

• default – An unexpected error response.

Response JSON Object

• access_permissions[].asset_attributes_read[] (string) –

• access_permissions[].asset_attributes_write[] (string) –

• access_permissions[].behaviours[] (string) –

• access_permissions[].event_arc_display_type_read[] (string) –

• access_permissions[].event_arc_display_type_write[] (string) –

• access_permissions[].include_attributes[] (string) –

• access_permissions[].subjects[] (string) –

• access_permissions[].user_attributes[].or[] (string) –

• description (string) – Customer description for the access policy.

• display_name (string) – Customer friendly name for the access policy.

68 Chapter 7. Identity and Access Management (v1)

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://www.rfc-editor.org/rfc/rfc6585#section-4
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

Jitsuin Archivist, Release v0.1.0

• filters[].or[] (string) –

• identity (string) – Unique identification for the access policy, Relative Resource
Name

• tenant (string) – Tenant id

DELETE /archivist/iam/v1/access_policies/{uuid}
Delete an access policy

Delete the identified access policy

Parameters

• uuid (string) – Specify the Access Policy UUID where access_policies/{uuid} is
the Access Policy Identity e.g. add30235-1424-4fda-840a-d5ef82c4c96f from Identity
access_policies/add30235-1424-4fda-840a-d5ef82c4c96f

Status Codes

• 200 OK – A successful response.

• 400 Bad Request – Returned when the request is badly formed.

• 401 Unauthorized – Returned when the user is not authenticated to the system.

• 403 Forbidden – Returned when the user is not authorized to delete the access policy.

• 404 Not Found – Returned when the identified access policy does not exist.

• 429 Too Many Requests – Returned when a user exceeds their subscription’s rate limit for
requests.

• 500 Internal Server Error – Returned when the underlying storage system returns an error.

• default – An unexpected error response.

PATCH /archivist/iam/v1/access_policies/{uuid}
Update a access policy details

Perform a full or partial update of the identified access policy

Parameters

• uuid (string) – Specify the Access Policy UUID where access_policies/{uuid} is
the Access Policy Identity e.g. add30235-1424-4fda-840a-d5ef82c4c96f from Identity
access_policies/add30235-1424-4fda-840a-d5ef82c4c96f

Query Parameters

• mask (string) – The mask says exactly which fields are to be updated. This removes the
ambiguity caused by ‘zero’ valued fields. https://grpc-ecosystem.github.io/grpc-gateway/
docs/patch.html

Request JSON Object

• access_permissions[].asset_attributes_read[] (string) –

• access_permissions[].asset_attributes_write[] (string) –

• access_permissions[].behaviours[] (string) –

• access_permissions[].event_arc_display_type_read[] (string) –

• access_permissions[].event_arc_display_type_write[] (string) –

• access_permissions[].include_attributes[] (string) –

7.1. IAM Access Policies API (v1) 69

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://www.rfc-editor.org/rfc/rfc6585#section-4
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1
https://grpc-ecosystem.github.io/grpc-gateway/docs/patch.html
https://grpc-ecosystem.github.io/grpc-gateway/docs/patch.html

Jitsuin Archivist, Release v0.1.0

• access_permissions[].subjects[] (string) –

• access_permissions[].user_attributes[].or[] (string) –

• description (string) – Customer description for the access policy.

• display_name (string) – Customer friendly name for the access policy.

• filters[].or[] (string) –

• identity (string) – Unique identification for the access policy, Relative Resource
Name

• tenant (string) – Tenant id

Status Codes

• 200 OK – A successful response.

• 400 Bad Request – Returned when the request is badly formed.

• 401 Unauthorized – Returned when the user is not authenticated to the system.

• 403 Forbidden – Returned when the user is not authorized to update the access policy.

• 404 Not Found – Returned when the identified access policy does not exist.

• 429 Too Many Requests – Returned when a user exceeds their subscription’s rate limit for
requests.

• 500 Internal Server Error – Returned when the underlying storage system returns an error.

• default – An unexpected error response.

Response JSON Object

• access_permissions[].asset_attributes_read[] (string) –

• access_permissions[].asset_attributes_write[] (string) –

• access_permissions[].behaviours[] (string) –

• access_permissions[].event_arc_display_type_read[] (string) –

• access_permissions[].event_arc_display_type_write[] (string) –

• access_permissions[].include_attributes[] (string) –

• access_permissions[].subjects[] (string) –

• access_permissions[].user_attributes[].or[] (string) –

• description (string) – Customer description for the access policy.

• display_name (string) – Customer friendly name for the access policy.

• filters[].or[] (string) –

• identity (string) – Unique identification for the access policy, Relative Resource
Name

• tenant (string) – Tenant id

GET /archivist/iam/v1/access_policies/{uuid}/assets
Returns assets matching access policy

Returns assets matching access policy

Parameters

70 Chapter 7. Identity and Access Management (v1)

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://www.rfc-editor.org/rfc/rfc6585#section-4
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

Jitsuin Archivist, Release v0.1.0

• uuid (string) – Specify the Access Policy UUID where access_policies/{uuid} is
the Access Policy Identity e.g. add30235-1424-4fda-840a-d5ef82c4c96f from Identity
access_policies/add30235-1424-4fda-840a-d5ef82c4c96f

Query Parameters

• order_by (string) – Specify the sort order for the results.

• page_size (integer) – Maximum entries per page

• page_token (string) – The next_page_token returned from a previous list request if
any.

Status Codes

• 200 OK – A successful response.

• 400 Bad Request – Returned when the request is badly formed.

• 401 Unauthorized – Returned when the user is not authenticated to the system.

• 403 Forbidden – Returned when the user is not authorized to list the access policy.

• 404 Not Found – Returned when the identified access policy does not exist.

• 429 Too Many Requests – Returned when a user exceeds their subscription’s rate limit for
requests.

• 500 Internal Server Error – Returned when the underlying storage system returns an error.

• default – An unexpected error response.

Response JSON Object

• assets[].access_policy (object) – key value mapping of behaviour to private
for keys

• assets[].at_time (string) – indicates time the asset data is from (read only)

• assets[].attributes (object) – key value mapping of asset properties

• assets[].behaviours[] (string) –

• assets[].chain_id (string) – chain id of the blockchain associated with this asset
(read only)

• assets[].confirmation_status (string) –

• assets[].identity (string) – relative resource address assets/{UUID} (read only)

• assets[].owner (string) – wallet address of the asset owner (read only)

• assets[].proof_mechanism (string) –

• assets[].public (boolean) – Public asset

• assets[].storage_integrity (string) – Specifies how the asset data will be
stored. This is set once on creation and does not change.

• assets[].tenant_identity (string) – Identity of the tenant the that created this
asset

• assets[].tracked (string) –

• next_page_token (string) – Token to retrieve the next page of results or empty if
there are none.

7.1. IAM Access Policies API (v1) 71

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://www.rfc-editor.org/rfc/rfc6585#section-4
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

Jitsuin Archivist, Release v0.1.0

GET /archivist/iam/v1/access_policies:caps
Get remaining capped resources for AccessPolicies

Not stable or officially supported. Get remaining capped resources for AccessPolicies

Status Codes

• 200 OK – A successful response.

• 401 Unauthorized – Returned when the user is not authenticated to the system.

• 429 Too Many Requests – Returned when a user exceeds their subscription’s rate limit for
requests.

• default – An unexpected error response.

Response JSON Object

• caps[].resource_remaining (string) – Number of capped resources remaining

• caps[].resource_type (string) – String identifying the capped resource type

GET /archivist/iam/v1/assets/{uuid}/access_policies
Get matching access policies

Get matching access policies for specified asset

Parameters

• uuid (string) – Specify the Asset UUID where assets/{uuid} is the Asset Identity e.g.
add30235-1424-4fda-840a-d5ef82c4c96f from Identity assets/add30235-1424-4fda-840a-
d5ef82c4c96f

Query Parameters

• at_time (string) – Specify time in the past to show asset data as it was at time specified

Status Codes

• 200 OK – A successful response.

• 400 Bad Request – Returned when the request is badly formed.

• 401 Unauthorized – Returned when the user is not authenticated to the system.

• 403 Forbidden – Returned when the user is not authorized to list the access policy.

• 404 Not Found – Returned when the identified access policy does not exist.

• 429 Too Many Requests – Returned when a user exceeds their subscription’s rate limit for
requests.

• 500 Internal Server Error – Returned when the underlying storage system returns an error.

• default – An unexpected error response.

Response JSON Object

• access_policies[].access_permissions[].asset_attributes_read[]
(string) –

• access_policies[].access_permissions[].asset_attributes_write[]
(string) –

• access_policies[].access_permissions[].behaviours[] (string) –

• access_policies[].access_permissions[].event_arc_display_type_read[]
(string) –

72 Chapter 7. Identity and Access Management (v1)

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.rfc-editor.org/rfc/rfc6585#section-4
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://www.rfc-editor.org/rfc/rfc6585#section-4
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

Jitsuin Archivist, Release v0.1.0

• access_policies[].access_permissions[].event_arc_display_type_write[]
(string) –

• access_policies[].access_permissions[].include_attributes[]
(string) –

• access_policies[].access_permissions[].subjects[] (string) –

• access_policies[].access_permissions[].user_attributes[].
or[] (string) –

• access_policies[].description (string) – Customer description for the ac-
cess policy.

• access_policies[].display_name (string) – Customer friendly name for the
access policy.

• access_policies[].filters[].or[] (string) –

• access_policies[].identity (string) – Unique identification for the access
policy, Relative Resource Name

• access_policies[].tenant (string) – Tenant id

• next_page_token (string) – Token to retrieve the next page of results or empty if
there are none.

GET /archivist/iam/v1/access_policies:openapi
Get OpenAPI spec for AccessPolicies

Get OpenAPI v2.0 spec for AccessPolicies

Status Codes

• 200 OK – A successful response.

• 401 Unauthorized – Returned when the user is not authenticated to the system.

• 429 Too Many Requests – Returned when a user exceeds their subscription’s rate limit for
requests.

• default – An unexpected error response.

GET /archivist/iam/v1/access_policies:openapi-ui
Get OpenAPI UI for AccessPolicies

Get OpenAPI v2.0 UI for AccessPolicies

Status Codes

• 200 OK – A successful response.

• 401 Unauthorized – Returned when the user is not authenticated to the system.

• 429 Too Many Requests – Returned when a user exceeds their subscription’s rate limit for
requests.

• default – An unexpected error response.

7.1. IAM Access Policies API (v1) 73

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.rfc-editor.org/rfc/rfc6585#section-4
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.rfc-editor.org/rfc/rfc6585#section-4

Jitsuin Archivist, Release v0.1.0

7.2 IAM Subjects API (v1)

7.2.1 IAM Subjects Creation (v1)

Create the bearer_token and store in a file in a secure local directory with 0600 permissions.

See API Request Authorization and Authentication.

Note: The following example shows use of the API over curl in a bash terminal. The concepts are fully portable to
any other REST client (eg PostMan or python requests)

Set the URL (for example):

$ export URL=https://synsation.1234-5678.nodes.archivist.jitsuin.io

Define the subjects parameters and store in /path/to/jsonfile:

{
"display_name": "Some description",
"wallet_pub_key": ["key1"],
"tessera_pub_key": ["key2"]

}

Note:

display_name required Friendly name for the location. Displayed in the Archivist GUI.

wallet_pub_key required a list containing a single organisation wallet key.

tessera_pub_key required a list containing the single tessera key for the archivist node the subject has residency on

Create the IAM subject:

$ curl -v -X POST \
-H "@$BEARER_TOKEN_FILE" \
-H "Content-type: application/json" \
-d "@/path/to/jsonfile" \
$URL/archivist/iam/v1/subjects

The response is:

{
"identity": "subjects/3f5be24f-fd1b-40e2-af35-ec7c14c74d53",
"display_name": "Some description",
"wallet_pub_key": ["key1"],
"wallet_address": ["address"],
"tessera_pub_key": ["key2"]

}

Note: A full API reference is available in Swagger POST API

74 Chapter 7. Identity and Access Management (v1)

openapi.html#post--archivist-iam-v1-subjects

Jitsuin Archivist, Release v0.1.0

7.2.2 IAM Subjects Retrieval (v1)

Create the bearer_token and store in a file in a secure local directory with 0600 permissions.

See API Request Authorization and Authentication.

Note: The following example shows use of the API over curl in a bash terminal. The concepts are fully portable to
any other REST client (eg PostMan or python requests)

Set the URL (for example):

$ export URL=https://synsation.1234-5678.nodes.archivist.jitsuin.io

IAM subject records in Jitsuin Archivist are tokenized at creation time and referred to in all API calls and smart
contracts throughout the system by a unique identity of the form:

subjects/12345678-90ab-cdef-1234-567890abcdef.

If you do not know the subjects’s identity you can fetch IAM subject records using other information you do know,
such as the subject’s name.

Fetch all IAM subjects (v1)

To fetch all IAM subjects records, simply GET the /subjects resource:

$ curl -v -X GET \
-H "@$BEARER_TOKEN_FILE" \
$URL/archivist/iam/v1/subjects

Fetch specific IAM Subject by identity (v1)

If you know the unique identity of the IAM subject Record simply GET the resource:

$ curl -v -X GET \
-H "@$BEARER_TOKEN_FILE" \
$URL/archivist/iam/v1/subjects/6a951b62-0a26-4c22-a886-1082297b063b

Fetch IAM Subjects by name (v1)

To fetch all IAM subjects with a specific name, GET the /subjects resource and filter on display_name:

$ curl -g -v -X GET \
-H "@$BEARER_TOKEN_FILE" \
$URL/archivist/iam/v1/subjects?display_name=Acme

Each of these calls returns a list of matching IAM subjects records in the form:

{
"subjects": [

{
"identity": "subjects/6a951b62-0a26-4c22-a886-1082297b063b",
"display_name": "Some description",

(continues on next page)

7.2. IAM Subjects API (v1) 75

Jitsuin Archivist, Release v0.1.0

(continued from previous page)

"wallet_pub_key": ["key1"],
"wallet_address": ["address1"],
"tessera_pub_key": ["key2"]

},
{

"identity": "subjects/12345678-0a26-4c22-a886-1082297b063b",
"display_name": "Some otherdescription",
"wallet_pub_key": ["key5"],
"wallet_address": ["address5"],
"tessera_pub_key": ["key7"]

}
]

}

Note: The number of records returned has a maximum limit. If this limit is too small then one must use API Request
Paging.

Note: The total number of subjects that exist is returned in the response header field ‘x-total-count’ if the ‘x-request-
total-count’ header on the request is set to ‘true’. The curl option ‘-i’ will emit this to stdout.

Note: A full API reference is available in Swagger GET API

7.2.3 IAM Subject Deletion (v1)

Create the bearer_token and store in a file in a secure local directory with 0600 permissions.

See API Request Authorization and Authentication.

Note: The following example shows use of the API over curl in a bash terminal. The concepts are fully portable to
any other REST client (eg PostMan or python requests)

Set the URL (for example):

$ export URL=https://synsation.1234-5678.nodes.archivist.jitsuin.io

To delete an IAM subject, issue following request:

$ curl -v -X DELETE \
-H "@$BEARER_TOKEN_FILE" \
-H "Content-type: application/json" \
$URL/archivist/iam/v1/subjects/47b58286-ff0f-11e9-8f0b-362b9e155667

The response is:

{}

Note: A full API reference is available in Swagger DELETE API

76 Chapter 7. Identity and Access Management (v1)

openapi.html#get--archivist-iam-v1-subjects
openapi.html#delete--archivist-iam-v1-identity

Jitsuin Archivist, Release v0.1.0

7.2.4 IAM Subjects Update (v1)

Create the bearer_token and store in a file in a secure local directory with 0600 permissions.

See API Request Authorization and Authentication.

Note: The following example shows use of the API over curl in a bash terminal. The concepts are fully portable to
any other REST client (eg PostMan or python requests)

Set the URL (for example):

$ export URL=https://synsation.1234-5678.nodes.archivist.jitsuin.io

Define the subjects parameters to be changed and store in /path/to/jsonfile:

{
"wallet_pub_key": ["key1"],
"tessera_pub_key": ["key2"]

}

Note:

wallet_pub_key list of organisation wallet keys

tessera_pub_key list of organisation tessera keys

Update the IAM Subject:

$ curl -v -X PATCH \
-H "@$BEARER_TOKEN_FILE" \
-H "Content-type: application/json" \
-d "@/path/to/jsonfile" \
$URL/archivist/iam/v1/subjects/47b58286-ff0f-11e9-8f0b-362b9e155667

The response is:

{
"identity": "subjects/3f5be24f-fd1b-40e2-af35-ec7c14c74d53",
"display_name": "Some description",
"wallet_pub_key": ["key1"],
"wallet_address": ["address1"],
"tessera_pub_key": ["key3"]

}

Note: A full API reference is available in Swagger PATCH API

7.2. IAM Subjects API (v1) 77

openapi.html#patch--archivist-iam-v1-identity

Jitsuin Archivist, Release v0.1.0

7.2.5 IAM Subjects Self Entry (v1)

There is an immutable entry in the subjects API called “Self” that contains the keys for the hosting organisation of the
Jitsuin Archivist Node.

This entry cannot be deleted or updated.

This special identity is:

subjects/00000000-0000-0000-0000-000000000000

Fetch self IAM Subject by identity (v1)

$ curl -v -X GET \
-H "@$BEARER_TOKEN_FILE" \
$URL/archivist/iam/v1/subjects/00000000-0000-0000-0000-000000000000

Response

[
{

"identity": "subjects/00000000-0000-0000-0000-000000000000",
"display_name": "Some description",
"wallet_pub_key": ["key1"],
"wallet_address": ["address1"],
"tessera_pub_key": ["key3"]

}
]

Note: A full API reference is available in Swagger GET API

7.2.6 IAM Subjects Swagger API

GET /archivist/iam/v1/subjects
List subjects

Returns a paginated list of subjects

Query Parameters

• order_by (string) – Specify the sort order for the results.

• page_size (integer) – Maximum entries per page

• page_token (string) – The next_page_token returned from a previous list request if
any.

• display_name (string) – Display name for filtering

Customer friendly name for the subject.

• wallet_address (string) – XXX: Investigate max length. Its 256 elsewhere in this
file, but that doesn’t seem right. Wallet address for filtering

Customer friendly name for the subject.

Status Codes

78 Chapter 7. Identity and Access Management (v1)

openapi.html#get--archivist--iam-v1-identity

Jitsuin Archivist, Release v0.1.0

• 200 OK – A successful response.

• 400 Bad Request – Returned when the request is badly formed.

• 401 Unauthorized – Returned when the user is not authenticated to the system.

• 403 Forbidden – Returned when the user is not authorized to read the subject.

• 429 Too Many Requests – Returned when a user exceeds their subscription’s rate limit for
requests.

• 500 Internal Server Error – Returned when the underlying storage system returns an error.

• default – An unexpected error response.

Response JSON Object

• next_page_token (string) – Token to retrieve the next page of results or empty if
there are none.

• subjects[].confirmation_status (string) –

• subjects[].display_name (string) – Customer friendly name for the subject.

• subjects[].identity (string) – Unique identification for the subject, Relative Re-
source Name

• subjects[].tenant (string) – Tenent id

• subjects[].tessera_pub_key[] (string) –

• subjects[].wallet_address[] (string) –

• subjects[].wallet_pub_key[] (string) –

POST /archivist/iam/v1/subjects
Create an subject

This request creates a new subject. The display_name is the friendly name.

Request JSON Object

• display_name (string) – Customer friendly name for the subject. (required)

• tessera_pub_key[] (string) –

• wallet_pub_key[] (string) –

Status Codes

• 200 OK – A successful response.

• 400 Bad Request – Returned when the request is badly formed.

• 401 Unauthorized – Returned when the user is not authenticated to the system.

• 403 Forbidden – Returned when the user is not authorized to create a subject.

• 429 Too Many Requests – Returned when a user exceeds their subscription’s rate limit for
requests.

• 500 Internal Server Error – Returned when the underlying storage system returns an error.

• default – An unexpected error response.

Response JSON Object

• confirmation_status (string) –

• display_name (string) – Customer friendly name for the subject.

7.2. IAM Subjects API (v1) 79

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
https://www.rfc-editor.org/rfc/rfc6585#section-4
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
https://www.rfc-editor.org/rfc/rfc6585#section-4
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

Jitsuin Archivist, Release v0.1.0

• identity (string) – Unique identification for the subject, Relative Resource Name

• tenant (string) – Tenent id

• tessera_pub_key[] (string) –

• wallet_address[] (string) –

• wallet_pub_key[] (string) –

GET /archivist/iam/v1/subjects/{uuid}
Get an subject

Returns the identified subject

Parameters

• uuid (string) – Specify the Subject UUID where subjects/{uuid} is the Subject Identity
e.g. add30235-1424-4fda-840a-d5ef82c4c96f from Identity subjects/add30235-1424-4fda-
840a-d5ef82c4c96f. Note the special subject 00000000-0000-0000-0000-000000000000
represents the self subject, or your own organisation.

Status Codes

• 200 OK – A successful response.

• 400 Bad Request – Returned when the request is badly formed.

• 401 Unauthorized – Returned when the user is not authenticated to the system.

• 403 Forbidden – Returned when the user is not authorized to read the subject.

• 404 Not Found – Returned when the identified subject does not exist.

• 429 Too Many Requests – Returned when a user exceeds their subscription’s rate limit for
requests.

• 500 Internal Server Error – Returned when the underlying storage system returns an error.

• default – An unexpected error response.

Response JSON Object

• confirmation_status (string) –

• display_name (string) – Customer friendly name for the subject.

• identity (string) – Unique identification for the subject, Relative Resource Name

• tenant (string) – Tenent id

• tessera_pub_key[] (string) –

• wallet_address[] (string) –

• wallet_pub_key[] (string) –

DELETE /archivist/iam/v1/subjects/{uuid}
Delete a subject

Delete the identified subject

Parameters

• uuid (string) – Specify the Subject UUID where subjects/{uuid} is the Subject Identity
e.g. add30235-1424-4fda-840a-d5ef82c4c96f from Identity subjects/add30235-1424-4fda-
840a-d5ef82c4c96f

Status Codes

80 Chapter 7. Identity and Access Management (v1)

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://www.rfc-editor.org/rfc/rfc6585#section-4
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

Jitsuin Archivist, Release v0.1.0

• 200 OK – A successful response.

• 400 Bad Request – Returned when the request is badly formed.

• 401 Unauthorized – Returned when the user is not authenticated to the system.

• 403 Forbidden – Returned when the user is not authorized to delete the subject.

• 404 Not Found – Returned when the identified laccess policy does not exist.

• 429 Too Many Requests – Returned when a user exceeds their subscription’s rate limit for
requests.

• 500 Internal Server Error – Returned when the underlying storage system returns an error.

• default – An unexpected error response.

PATCH /archivist/iam/v1/subjects/{uuid}
Update a subject’s details

Perform a full or partial update of the identified subject

Parameters

• uuid (string) – Specify the Subject UUID where subjects/{uuid} is the Subject Identity
e.g. add30235-1424-4fda-840a-d5ef82c4c96f from Identity subjects/add30235-1424-4fda-
840a-d5ef82c4c96f

Query Parameters

• mask (string) – The mask says exactly which fields are to be updated. This removes the
ambiguity caused by ‘zero’ valued fields. https://grpc-ecosystem.github.io/grpc-gateway/
docs/patch.html

Request JSON Object

• display_name (string) – Customer friendly name for the subject.

• identity (string) – Unique identification for the subject, Relative Resource Name

• tenant (string) – Tenent id

• tessera_pub_key[] (string) –

• wallet_address[] (string) –

• wallet_pub_key[] (string) –

Status Codes

• 200 OK – A successful response.

• 400 Bad Request – Returned when the request is badly formed.

• 401 Unauthorized – Returned when the user is not authenticated to the system.

• 403 Forbidden – Returned when the user is not authorized to update the subject.

• 404 Not Found – Returned when the identified subject does not exist.

• 429 Too Many Requests – Returned when a user exceeds their subscription’s rate limit for
requests.

• 500 Internal Server Error – Returned when the underlying storage system returns an error.

• default – An unexpected error response.

Response JSON Object

7.2. IAM Subjects API (v1) 81

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://www.rfc-editor.org/rfc/rfc6585#section-4
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1
https://grpc-ecosystem.github.io/grpc-gateway/docs/patch.html
https://grpc-ecosystem.github.io/grpc-gateway/docs/patch.html
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://www.rfc-editor.org/rfc/rfc6585#section-4
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

Jitsuin Archivist, Release v0.1.0

• confirmation_status (string) –

• display_name (string) – Customer friendly name for the subject.

• identity (string) – Unique identification for the subject, Relative Resource Name

• tenant (string) – Tenent id

• tessera_pub_key[] (string) –

• wallet_address[] (string) –

• wallet_pub_key[] (string) –

GET /archivist/iam/v1/subjects:openapi
Get OpenAPI spec for Subjects

Get OpenAPI v2.0 spec for Subjects

Status Codes

• 200 OK – A successful response.

• 401 Unauthorized – Returned when the user is not authenticated to the system.

• 429 Too Many Requests – Returned when a user exceeds their subscription’s rate limit for
requests.

• default – An unexpected error response.

GET /archivist/iam/v1/subjects:openapi-ui
Get OpenAPI UI for Subjects

Get OpenAPI v2.0 UI for Subjects

Status Codes

• 200 OK – A successful response.

• 401 Unauthorized – Returned when the user is not authenticated to the system.

• 429 Too Many Requests – Returned when a user exceeds their subscription’s rate limit for
requests.

• default – An unexpected error response.

82 Chapter 7. Identity and Access Management (v1)

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.rfc-editor.org/rfc/rfc6585#section-4
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.rfc-editor.org/rfc/rfc6585#section-4

CHAPTER

EIGHT

ATTACHMENTS API

Warning: This endpoint is currently deprecated and has been replaced by the Blobs endpoint.

8.1 Retrieve Attachment

Warning: This endpoint is currently deprecated and has been replaced by the Blobs endpoint.

Note: Attachments in the Jitsuin Archivist system are not first-order objects in their own right: they are properties of
other objects such as Asset Records or events. Due to this, Attachments MUST be retrieved by full unique resource
identity as stored in an asset Record or Event property. They cannot be listed, filtered, or searched.

Create the bearer_token and store in a file in a secure local directory with 0600 permissions.

See API Request Authorization and Authentication.

Note: The following example shows use of the API over curl in a bash terminal. The concepts are fully portable to
any other REST client (eg PostMan or python requests)

Set the URL (for example):

$ export URL=https://synsation.1234-5678.nodes.archivist.jitsuin.io

Retrieve a specific Attachment

$ curl -v \
-H "@$BEARER_TOKEN_FILE" \
-H "content_type=image/jpg" \
-F "file=@/path/to/file" \
$URL/archivist/v1/attachments/08838336-c357-460d-902a-3aba9528dd22

The response is:

{
"identity": "attachments/08838336-c357-460d-902a-3aba9528dd22",
"hash": {

"alg": "SHA256",

(continues on next page)

83

Jitsuin Archivist, Release v0.1.0

(continued from previous page)

"value": "xxxxxxxxxxxxxxxxxxxxxxx"
},
"mime_type": "image/jpeg",
"timestamp_accepted": "2019-11-07T15:31:49Z",
"size": 31424

}

Note: The number of records returned has a maximum limit. If this limit is too small then one must use API Request
Paging.

A full API reference is available in Swagger GET API

8.2 Attachments Swagger API

GET /archivist/v1/attachments/{uuid}
Get an attachment

Returns the attachment associated with the relative resource name

Parameters

• uuid (string) – Specify the Attachment UUID where attachments/{uuid} is
the Attachment Identity e.g. add30235-1424-4fda-840a-d5ef82c4c96f from Identity
attachments/add30235-1424-4fda-840a-d5ef82c4c96f

Status Codes

• 200 OK – A successful response.(streaming responses)

• 401 Unauthorized – Returned when the user is not authenticated to the system.

• 403 Forbidden – Returned when the user is not authorized to read the attachment.

• 404 Not Found – Returned when an attachment with the identity does not exist.

• 429 Too Many Requests – Returned when a user exceeds their subscription’s rate limit for
requests.

• default – An unexpected error response.

Response JSON Object

• error.code (integer) –

• error.details[].@type (string) – A URL/resource name that uniquely identifies
the type of the serialized protocol buffer message. This string must contain at least one “/”
character. The last segment of the URL’s path must represent the fully qualified name of the
type (as in path/google.protobuf.Duration). The name should be in a canonical form (e.g.,
leading “.” is not accepted).

In practice, teams usually precompile into the binary all types that they expect it to use in
the context of Any. However, for URLs which use the scheme http, https, or no scheme, one
can optionally set up a type server that maps type URLs to message definitions as follows:

* If no scheme is provided, https is assumed. * An HTTP GET on the URL must yield
a [google.protobuf.Type][] value in binary format, or produce an error. * Applications are
allowed to cache lookup results based on the URL, or have them precompiled into a binary

84 Chapter 8. Attachments API

openapi.html#get--archivist-v2-attachments
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://www.rfc-editor.org/rfc/rfc6585#section-4

Jitsuin Archivist, Release v0.1.0

to avoid any lookup. Therefore, binary compatibility needs to be preserved on changes to
types. (Use versioned type names to manage breaking changes.)

Note: this functionality is not currently available in the official protobuf release, and it is not
used for type URLs beginning with type.googleapis.com.

Schemes other than http, https (or the empty scheme) might be used with implementation
specific semantics.

• error.message (string) –

• result.content_type (string) – The HTTP Content-Type string representing the
content type of the body.

• result.data (string) – HTTP body binary data.

• result.extensions[].@type (string) – A URL/resource name that uniquely
identifies the type of the serialized protocol buffer message. This string must contain at
least one “/” character. The last segment of the URL’s path must represent the fully qualified
name of the type (as in path/google.protobuf.Duration). The name should be in a canonical
form (e.g., leading “.” is not accepted).

In practice, teams usually precompile into the binary all types that they expect it to use in
the context of Any. However, for URLs which use the scheme http, https, or no scheme, one
can optionally set up a type server that maps type URLs to message definitions as follows:

* If no scheme is provided, https is assumed. * An HTTP GET on the URL must yield
a [google.protobuf.Type][] value in binary format, or produce an error. * Applications are
allowed to cache lookup results based on the URL, or have them precompiled into a binary
to avoid any lookup. Therefore, binary compatibility needs to be preserved on changes to
types. (Use versioned type names to manage breaking changes.)

Note: this functionality is not currently available in the official protobuf release, and it is not
used for type URLs beginning with type.googleapis.com.

Schemes other than http, https (or the empty scheme) might be used with implementation
specific semantics.

GET /archivist/v1/attachments/{uuid}/info
Get attachment metadata

Gets the metadata associated an attachment uuid

Parameters

• uuid (string) – Specify the Attachment UUID where attachments/{uuid} is
the Attachment Identity e.g. add30235-1424-4fda-840a-d5ef82c4c96f from Identity
attachments/add30235-1424-4fda-840a-d5ef82c4c96f

Status Codes

• 200 OK – A successful response.

• 401 Unauthorized – Returned when the user is not authenticated to the system.

• 403 Forbidden – Returned when the user is not authorized to read the attachment.

• 404 Not Found – Returned when an attachment with the identity does not exist.

• 429 Too Many Requests – Returned when a user exceeds their subscription’s rate limit for
requests.

• default – An unexpected error response.

Response JSON Object

8.2. Attachments Swagger API 85

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://www.rfc-editor.org/rfc/rfc6585#section-4

Jitsuin Archivist, Release v0.1.0

• hash.alg (string) –

• hash.value (string) – Calculated hash.

• identity (string) – Relative resource name for the attachment. e.g.
attachments/20c97f42-87fc-482c-9d58-4d11abd33359 (read only)

• mime_type (string) – Type of data e.g. image/jpeg (read only)

• size (string) – Size of blob in bytes (read only)

• timestamp_accepted (string) – Timestamp of creation (read only)

86 Chapter 8. Attachments API

CHAPTER

NINE

ATTACHMENTS V2 API

9.1 Retrieve Attachment

Note: Attachments in the Jitsuin Archivist system are not first-order objects in their own right: they are properties
of other objects such as Asset Records or events. Due to this, Attachments MUST be retrieved by providing asset or
event identity and unique attachment identity. They cannot be listed, filtered, or searched.

Create the bearer_token and store in a file in a secure local directory with 0600 permissions.

See API Request Authorization and Authentication.

Note: The following example shows use of the API over curl in a bash terminal. The concepts are fully portable to
any other REST client (eg PostMan or python requests)

Set the URL (for example):

$ export URL=https://synsation.1234-5678.nodes.archivist.jitsuin.io

Retrieve a specific Attachment found on an asset assets/c04d5ecf-02e0-4be2-a014-ffbbf0e8ddeb

$ curl -v \
-H "@$BEARER_TOKEN_FILE" \
$URL/archivist/v2/attachments/assets/c04d5ecf-02e0-4be2-a014-ffbbf0e8ddeb/

→˓08838336-c357-460d-902a-3aba9528dd22

To retrieve a specific Attachment found on an event assets/c04d5ecf-02e0-4be2-a014-ffbbf0e8ddeb/events/de834094-
f6c3-4e38-9b37-8c61dea312c9 issue following curl command

$ curl -v \
-H "@$BEARER_TOKEN_FILE" \
$URL/archivist/v2/attachments/assets/c04d5ecf-02e0-4be2-a014-ffbbf0e8ddeb/events/

→˓de834094-f6c3-4e38-9b37-8c61dea312c9/08838336-c357-460d-902a-3aba9528dd22

The response will be a download of the specified attachment

It’s also possible to retrieve information about specific attachment using this API. To do that simply issue request as
above with a suffix /info

$ curl -v \
-H "@$BEARER_TOKEN_FILE" \
$URL/archivist/v2/attachments/assets/c04d5ecf-02e0-4be2-a014-ffbbf0e8ddeb/

→˓08838336-c357-460d-902a-3aba9528dd22/info (continues on next page)

87

Jitsuin Archivist, Release v0.1.0

(continued from previous page)

The response will include basic information about the attachment

{
"identity": "attachments/08838336-c357-460d-902a-3aba9528dd22",
"hash": {

"alg": "SHA256",
"value": "xxxxxxxxxxxxxxxxxxxxxxx"

},
"mime_type": "image/jpeg",
"timestamp_accepted": "2019-11-07T15:31:49Z",
"size": 31424

}

88 Chapter 9. Attachments V2 API

CHAPTER

TEN

BLOBSV1 API

10.1 Upload Blob

Create the bearer_token and store in a file in a secure local directory with 0600 permissions.

See API Request Authorization and Authentication.

Note: The following example shows use of the API over curl in a bash terminal. The concepts are fully portable to
any other REST client (eg PostMan or python requests)

Set the URL (for example):

$ export URL=https://synsation.1234-5678.nodes.archivist.jitsuin.io

Upload the blob stored at /path/to/file:

$ curl -v -X POST \
-H "@$BEARER_TOKEN_FILE" \
-H "content_type=image/jpg" \
-F "file=@/path/to/file" \
$URL/archivist/v1/blobs

The response is:

{
"identity": "blobs/08838336-c357-460d-902a-3aba9528dd22",
"hash": {

"alg": "SHA256",
"value": "xxxxxxxxxxxxxxxxxxxxxxx"

},
"mime_type": "image/jpeg",
"timestamp_accepted": "2019-11-07T15:31:49Z",
"size": 31424

}

Note:

identity The unique identity of the asset in the Jitsuin Archivist system, used to reference the blob in an Asset Record
or asset event (usually a Maintenance event).

89

Jitsuin Archivist, Release v0.1.0

Warning: Blobs in the Jitsuin Archivist system are not first-order objects in their own right: they are properties
of other objects such as Asset Records or events.

10.2 Retrieve Blob

Note: Blobs in the Jitsuin Archivist system are not first-order objects in their own right: they are properties of other
objects such as Asset Records or events.

Create the bearer_token and store in a file in a secure local directory with 0600 permissions.

See API Request Authorization and Authentication.

Note: The following example shows use of the API over curl in a bash terminal. The concepts are fully portable to
any other REST client (eg PostMan or python requests)

Set the URL (for example):

$ export URL=https://synsation.1234-5678.nodes.archivist.jitsuin.io

Retrieve a specific Attachment

$ curl -v \
-H "@$BEARER_TOKEN_FILE" \
-H "content_type=image/jpg" \
-F "file=@/path/to/file" \
$URL/archivist/v1/blobs/08838336-c357-460d-902a-3aba9528dd22

The response is:

{
"identity": "blobsV1/08838336-c357-460d-902a-3aba9528dd22",
"hash": {

"alg": "SHA256",
"value": "xxxxxxxxxxxxxxxxxxxxxxx"

},
"mime_type": "image/jpeg",
"timestamp_accepted": "2019-11-07T15:31:49Z",
"size": 31424

}

90 Chapter 10. BlobsV1 API

CHAPTER

ELEVEN

LOCATIONS API

11.1 Location Creation

Create the bearer_token and store in a file in a secure local directory with 0600 permissions.

See API Request Authorization and Authentication.

Note: The following example shows use of the API over curl in a bash terminal. The concepts are fully portable to
any other REST client (eg PostMan or python requests)

Set the URL (for example):

$ export URL=https://synsation.1234-5678.nodes.archivist.jitsuin.io

Define the location parameters and store in /path/to/jsonfile:

{
"display_name": "Macclesfield, Cheshire",
"description": "Manufacturing site, North West England, Macclesfield, Cheshire",
"latitude": 53.2546799,
"longitude": -2.1213956,
"attributes": {

"director": "John Smith",
"address": "Unit 6A, Synsation Park, Maccelsfield",
"Facility Type": "Manufacture",
"support_email": "support@macclesfield.com",
"support_phone": "123 456 789"

}
}

Note:

display_name required Friendly name for the location. Displayed in the Archivist GUI.

description required Extended information about the location.

extended_attributes freeform and can contain any fields.

See Swagger POST API

Create the location to POSTing to the locations resource:

91

openapi.html#post--archivist-v2-locations

Jitsuin Archivist, Release v0.1.0

$ curl -v -X POST \
-H "@$BEARER_TOKEN_FILE" \
-H "Content-type: application/json" \
-d "@/path/to/jsonfile" \
$URL/archivist/v2/locations

The response is:

{
"identity": "locations/08838336-c357-460d-902a-3aba9528dd22",
"display_name": "Macclesfield, Cheshire",
"description": "Manufacturing site, North West England, Macclesfield, Cheshire",
"latitude": 53.2546799,
"longitude": -2.1213956,
"attributes": {

"director": "John Smith",
"address": "Bridgewater, Somerset",
"Facility Type": "Manufacture",
"support_email": "support@macclesfield.com",
"support_phone": "123 456 789"

}
}

Note:

identity used to attach the location to an asset during asset creation or asset event. (usually a maintenance event).

11.2 Location Retrieval

Create the bearer_token and store in a file in a secure local directory with 0600 permissions.

See API Request Authorization and Authentication.

Note: The following example shows use of the API over curl in a bash terminal. The concepts are fully portable to
any other REST client (eg PostMan or python requests)

Set the URL (for example):

$ export URL=https://synsation.1234-5678.nodes.archivist.jitsuin.io

11.2.1 Fetch all locations

To fetch all locations, simply GET the locations resource:

$ curl -v -X GET \
-H "@$BEARER_TOKEN_FILE" \
$URL/archivist/v2/locations

92 Chapter 11. Locations API

Jitsuin Archivist, Release v0.1.0

11.2.2 Fetch specific location by identity

If you know the unique identity of the location record, simply GET the resource:

$ curl -v -X GET \
-H "@$BEARER_TOKEN_FILE" \
$URL/archivist/v2/locations/08838336-c357-460d-902a-3aba9528dd22

11.2.3 Fetch location by name

To fetch all locations with a specific name, GET the assets resource and filter on display_name:

$ curl -v -X GET \
-H "@$BEARER_TOKEN_FILE" \
$URL/archivist/v2/locations?display_name=Macclesfield%2C%20Cheshire

Note: It is advisable to implement a unique naming scheme for location names, but this is not enforced by the system.
If multiple locations exist with the same name they will all be returned, and the client will need to differentiate based
on other attributes.

Each of these calls returns a list of matching asset records in the form:

{
"locations": [

{
"identity": "locations/08838336-c357-460d-902a-3aba9528dd22",
"display_name": "Macclesfield, Cheshire",
"description": "Manufacturing site, North West England, Macclesfield,

→˓Cheshire",
"latitude": "53.2546799",
"longitude": "-2.1213956,14.54",
"attributes": {

"director": "John Smith",
"address": "Bridgewater, Somerset",
"Facility Type": "Manufacture",
"support_email": "support@macclesfield.com",
"support_phone": "123 456 789"

}
}

]
}

Note: The number of records returned has a maximum limit. If this limit is too small then one must use API Request
Paging.

Note: The total number of assets that exist is returned in the response header field ‘x-total-count’ if the ‘x-request-
total-count’ header on the request is set to ‘true’. The curl option ‘-i’ will emit this to stdout.

Note: A full API reference is available in Swagger GET API

11.2. Location Retrieval 93

openapi.html#get--archivist-v2-locations

Jitsuin Archivist, Release v0.1.0

11.3 Locations Swagger API

GET /archivist/v2/locations
List locations

Returns a paginated list of locations

Query Parameters

• order_by (string) – Specify the sort order for the results. By display_name and by
named extended attribute are supported.

• page_size (integer) – Maximum locations per page

• page_token (string) – The next_page_token returned from a previous list request if
any.

• display_name (string) – Further fields are bound to query parameters and act to filter
the result

• description (string) –

Status Codes

• 200 OK – A successful response.

• 401 Unauthorized – Returned when the user is not authenticated to the system.

• 403 Forbidden – Returned when the user is not authorized to read the location.

• 429 Too Many Requests – Returned when a user exceeds their subscription’s rate limit for
requests.

• default – An unexpected error response.

Response JSON Object

• locations[].attributes (object) – key value mapping of asset properties

• locations[].description (string) – Free text description of the location

• locations[].display_name (string) – Customer friendly name for the location.

• locations[].identity (string) – Unique identification for the location, Relative
Resource Name

• locations[].latitude (number) – Latitude in decimal degrees

• locations[].longitude (number) – Longitude in decimal degrees

• locations[].owner (string) – wallet address of the location owner

• locations[].tenant (string) – Tenent id

• next_page_token (string) – Token to retrieve the next page of results or empty if
there are none.

POST /archivist/v2/locations
Create a location

Create a new location.

Request JSON Object

• attributes (object) – key value mapping of location properties

• description (string) – Free text description of the location

94 Chapter 11. Locations API

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
https://www.rfc-editor.org/rfc/rfc6585#section-4

Jitsuin Archivist, Release v0.1.0

• display_name (string) – Customer friendly name for the location. (required)

• latitude (number) – Latitude in decimal degrees format. (required)

• longitude (number) – longitude in decimal degrees format. (required)

Status Codes

• 200 OK – A successful response.

• 401 Unauthorized – Returned when the user is not authenticated to the system.

• 402 Payment Required – Returned when the user’s quota of locations policies has been
reached.

• 403 Forbidden – Returned when the user is not authorized to create a location.

• 429 Too Many Requests – Returned when a user exceeds their subscription’s rate limit for
requests.

• default – An unexpected error response.

Response JSON Object

• attributes (object) – key value mapping of asset properties

• description (string) – Free text description of the location

• display_name (string) – Customer friendly name for the location.

• identity (string) – Unique identification for the location, Relative Resource Name

• latitude (number) – Latitude in decimal degrees

• longitude (number) – Longitude in decimal degrees

• owner (string) – wallet address of the location owner

• tenant (string) – Tenent id

GET /archivist/v2/locations/{uuid}
Get a location

Returns the identified location

Parameters

• uuid (string) – Specify the Location UUID where locations/{uuid} is the Location Iden-
tity e.g. add30235-1424-4fda-840a-d5ef82c4c96f from Identity locations/add30235-1424-
4fda-840a-d5ef82c4c96f

Status Codes

• 200 OK – A successful response.

• 401 Unauthorized – Returned when the user is not authenticated to the system.

• 403 Forbidden – Returned when the user is not authorized to read the location.

• 404 Not Found – Returned when the identified location does not exist.

• 429 Too Many Requests – Returned when a user exceeds their subscription’s rate limit for
requests.

• default – An unexpected error response.

Response JSON Object

• attributes (object) – key value mapping of asset properties

11.3. Locations Swagger API 95

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.3
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
https://www.rfc-editor.org/rfc/rfc6585#section-4
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://www.rfc-editor.org/rfc/rfc6585#section-4

Jitsuin Archivist, Release v0.1.0

• description (string) – Free text description of the location

• display_name (string) – Customer friendly name for the location.

• identity (string) – Unique identification for the location, Relative Resource Name

• latitude (number) – Latitude in decimal degrees

• longitude (number) – Longitude in decimal degrees

• owner (string) – wallet address of the location owner

• tenant (string) – Tenent id

DELETE /archivist/v2/locations/{uuid}
Delete a location

Delete the identified location

Parameters

• uuid (string) – Specify the Location UUID where locations/{uuid} is the Location Iden-
tity e.g. add30235-1424-4fda-840a-d5ef82c4c96f from Identity locations/add30235-1424-
4fda-840a-d5ef82c4c96f

Status Codes

• 200 OK – A successful response.

• 401 Unauthorized – Returned when the user is not authenticated to the system.

• 403 Forbidden – Returned when the user is not authorized to delete the location.

• 404 Not Found – Returned when the identified location does not exist.

• 429 Too Many Requests – Returned when a user exceeds their subscription’s rate limit for
requests.

• default – An unexpected error response.

PATCH /archivist/v2/locations/{uuid}
Update a location’s details

Perform a full or partial update of the identified location

Parameters

• uuid (string) – Specify the Location UUID where locations/{uuid} is the Location Iden-
tity e.g. add30235-1424-4fda-840a-d5ef82c4c96f from Identity locations/add30235-1424-
4fda-840a-d5ef82c4c96f

Query Parameters

• mask (string) – The mask says exactly which fields are to be updated. This removes the
ambiguity caused by ‘zero’ valued fields. https://grpc-ecosystem.github.io/grpc-gateway/
docs/patch.html

Request JSON Object

• attributes (object) – key value mapping of asset properties

• description (string) – Free text description of the location

• display_name (string) – Customer friendly name for the location.

• identity (string) – Unique identification for the location, Relative Resource Name

• latitude (number) – Latitude in decimal degrees

96 Chapter 11. Locations API

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://www.rfc-editor.org/rfc/rfc6585#section-4
https://grpc-ecosystem.github.io/grpc-gateway/docs/patch.html
https://grpc-ecosystem.github.io/grpc-gateway/docs/patch.html

Jitsuin Archivist, Release v0.1.0

• longitude (number) – Longitude in decimal degrees

• owner (string) – wallet address of the location owner

• tenant (string) – Tenent id

Status Codes

• 200 OK – A successful response.

• 401 Unauthorized – Returned when the user is not authenticated to the system.

• 403 Forbidden – Returned when the user is not authorized to update the location.

• 404 Not Found – Returned when the identified location does not exist.

• 429 Too Many Requests – Returned when a user exceeds their subscription’s rate limit for
requests.

• default – An unexpected error response.

Response JSON Object

• attributes (object) – key value mapping of asset properties

• description (string) – Free text description of the location

• display_name (string) – Customer friendly name for the location.

• identity (string) – Unique identification for the location, Relative Resource Name

• latitude (number) – Latitude in decimal degrees

• longitude (number) – Longitude in decimal degrees

• owner (string) – wallet address of the location owner

• tenant (string) – Tenent id

GET /archivist/v2/locations/{uuid}/permissions
Get location permissions

Get location permissions for identified location

Parameters

• uuid (string) – Specify the Location UUID where locations/{uuid} is the Location Iden-
tity e.g. add30235-1424-4fda-840a-d5ef82c4c96f from Identity locations/add30235-1424-
4fda-840a-d5ef82c4c96f

Status Codes

• 200 OK – A successful response.

• 401 Unauthorized – Returned when the user is not authenticated to the system.

• 403 Forbidden – Returned when the user is not authorized to list permissions for the location.

• 404 Not Found – Returned when the identified location does not exist.

• 429 Too Many Requests – Returned when a user exceeds their subscription’s rate limit for
requests.

• default – An unexpected error response.

Response JSON Object

• location_identity (string) – The location identity in the form: locations/{uuid}
(read only)

11.3. Locations Swagger API 97

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://www.rfc-editor.org/rfc/rfc6585#section-4
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://www.rfc-editor.org/rfc/rfc6585#section-4

Jitsuin Archivist, Release v0.1.0

• permissions.subject_identities[] (string) –

PATCH /archivist/v2/locations/{uuid}/permissions
Patch location permissions

Patch location permissions for identified location

Parameters

• uuid (string) – Specify the Location UUID where locations/{uuid} is the Location Iden-
tity e.g. add30235-1424-4fda-840a-d5ef82c4c96f from Identity locations/add30235-1424-
4fda-840a-d5ef82c4c96f

Request JSON Object

• subject_identities[] (string) –

Status Codes

• 200 OK – A successful response.

• 401 Unauthorized – Returned when the user is not authenticated to the system.

• 403 Forbidden – Returned when the user is not authorized to access permissions for the
location.

• 404 Not Found – Returned when the identified location does not exist.

• 429 Too Many Requests – Returned when a user exceeds their subscription’s rate limit for
requests.

• default – An unexpected error response.

Response JSON Object

• location_identity (string) – The location identity in the form: locations/{uuid}
(read only)

• permissions.subject_identities[] (string) –

GET /archivist/v2/locations:caps
Get remaining capped resources for Locations

Not stable or officially supported. Get remaining capped resources for Locations

Status Codes

• 200 OK – A successful response.

• 401 Unauthorized – Returned when the user is not authenticated to the system.

• 429 Too Many Requests – Returned when a user exceeds their subscription’s rate limit for
requests.

• default – An unexpected error response.

Response JSON Object

• caps[].resource_remaining (string) – Number of capped resources remaining

• caps[].resource_type (string) – String identifying the capped resource type

GET /archivist/v2/locations:openapi
Get OpenAPI spec for Locations

Get OpenAPI v2.0 spec for Locations

Status Codes

98 Chapter 11. Locations API

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://www.rfc-editor.org/rfc/rfc6585#section-4
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.rfc-editor.org/rfc/rfc6585#section-4

Jitsuin Archivist, Release v0.1.0

• 200 OK – A successful response.

• 401 Unauthorized – Returned when the user is not authenticated to the system.

• 429 Too Many Requests – Returned when a user exceeds their subscription’s rate limit for
requests.

• default – An unexpected error response.

GET /archivist/v2/locations:openapi-ui
Get OpenAPI UI for Locations

Get OpenAPI v2.0 UI for Locations

Status Codes

• 200 OK – A successful response.

• 401 Unauthorized – Returned when the user is not authenticated to the system.

• 429 Too Many Requests – Returned when a user exceeds their subscription’s rate limit for
requests.

• default – An unexpected error response.

11.3. Locations Swagger API 99

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.rfc-editor.org/rfc/rfc6585#section-4
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.rfc-editor.org/rfc/rfc6585#section-4

Jitsuin Archivist, Release v0.1.0

100 Chapter 11. Locations API

CHAPTER

TWELVE

ASSETS API

12.1 Asset Record Creation

Create the bearer_token and store in a file in a secure local directory with 0600 permissions.

See API Request Authorization and Authentication.

Note: The following example shows use of the API over curl in a bash terminal. The concepts are fully portable to
any other REST client (eg PostMan or python requests)

Set the URL (for example):

$ export URL=https://synsation.1234-5678.nodes.archivist.jitsuin.io

Define the asset parameters and store in /path/to/jsonfile:

{
"behaviours": ["Firmware", "Maintenance", "RecordEvidence", "LocationUpdate",

→˓"Attachments"],
"attributes": {

"arc_firmware_version": "1.0",
"arc_serial_number": "vtl-x4-07",
"arc_display_name": "tcl.ppj.003",
"arc_description": "Traffic flow control light at A603 North East",
"arc_home_location_identity": "locations/115340cf-f39e-4d43-a2ee-8017d672c6c6

→˓",
"arc_display_type": "Traffic light with violation camera",
"some_custom_attribute": "value",
"arc_attachments": [

{
"arc_display_name": "arc_primary_image",
"arc_attachment_identity": "blobs/87b1a84c-1c6f-442b-923e-a97516f4d275

→˓",
"arc_hash_alg": "SHA256",
"arc_hash_value":

→˓"246c316e2cd6971ce5c83a3e61f9880fa6e2f14ae2976ee03500eb282fd03a60"
}

]
}

}

Note:

101

Jitsuin Archivist, Release v0.1.0

behaviours list of behaviours to enable for this asset

attributes properties of asset

See Behaviours for details of behaviours and the system- reserved arc_* attributes.

See Upload Blob, Location Creation, and Location Retrieval for details of how to get the correct values for
arc_home_location_identity and arc_primary_image.

Create the asset:

$ curl -v -X POST \
-H "@$BEARER_TOKEN_FILE" \
-H "Content-type: application/json" \
-d "@/path/to/jsonfile" \
$URL/archivist/v2/assets

The response is:

{
"identity": "assets/3f5be24f-fd1b-40e2-af35-ec7c14c74d53",
"behaviours": [

"Firmware",
"Maintenance",
"RecordEvidence",
"LocationUpdate",
"Attachments"

],
"attributes": {

"arc_serial_number": "vtl-x4-07",
"arc_display_name": "tcl.ppj.003",
"arc_description": "Traffic flow control light at A603 North East",
"arc_home_location_identity": "locations/115340cf-f39e-4d43-a2ee-8017d672c6c6

→˓",
"arc_display_type": "Traffic light with violation camera",
"arc_firmware_version": "1.0",
"some_custom_attribute": "value",
"arc_attachments": [

{
"arc_display_name": "arc_primary_image",
"arc_attachment_identity": "blobs/87b1a84c-1c6f-442b-923e-a97516f4d275

→˓",
"arc_hash_alg": "SHA256",
"arc_hash_value":

→˓"246c316e2cd6971ce5c83a3e61f9880fa6e2f14ae2976ee03500eb282fd03a60"
}

]
},
"confirmation_status": "PENDING",
"tracked": "TRACKED"

}

Note: A full API reference is available in Swagger POST API

102 Chapter 12. Assets API

openapi.html#post--archivist-v2-assets

Jitsuin Archivist, Release v0.1.0

12.2 Asset Record Retrieval

Create the bearer_token and store in a file in a secure local directory with 0600 permissions.

See API Request Authorization and Authentication.

Note: The following example shows use of the API over curl in a bash terminal. The concepts are fully portable to
any other REST client (eg PostMan or python requests)

Set the URL (for example):

$ export URL=https://synsation.1234-5678.nodes.archivist.jitsuin.io

Asset records in Jitsuin Archivist are tokenized at creation time and referred to in all API calls and smart contracts
throughout the system by a unique identity of the form:

assets/12345678-90ab-cdef-1234-567890abcdef.

If you do not know the asset’s identity you can fetch asset records using other information you do know, such as the
asset’s name in your asset management or digital twin platform.

12.2.1 Fetch all assets

To fetch all asset records, simply GET the assets resource:

$ curl -v -X GET \
-H "@$BEARER_TOKEN_FILE" \
$URL/archivist/v2/assets

12.2.2 Fetch specific asset by identity

If you know the unique identity of the Asset Record simply GET the resource:

$ curl -v -X GET \
-H "@$BEARER_TOKEN_FILE" \
$URL/archivist/v2/assets/6a951b62-0a26-4c22-a886-1082297b063b

12.2.3 Fetch specific asset at given point in time by identity

If you know the unique identity of an Asset Record and want to show its state at any given point in the past, simply
GET with following query parameter

$ curl -v -X GET \
-H "@$BEARER_TOKEN_FILE" \
$URL/archivist/v2/assets/6a951b62-0a26-4c22-a886-1082297b063b?at_time=2021-01-

→˓13T12:34:21Z

This will return the Asset Record with the values it had on 2021-01-13T12:34:21Z

12.2. Asset Record Retrieval 103

Jitsuin Archivist, Release v0.1.0

12.2.4 Fetch assets by name

To fetch all assets with a specific name, GET the assets resource and filter on arc_display_name:

$ curl -g -v -X GET \
-H "@$BEARER_TOKEN_FILE" \
$URL/archivist/v2/assets?attributes.arc_display_name=tcl.ccj.003

12.2.5 Fetch assets by type

To fetch all assets of a specific type, GET the assets resource and filter on arc_display_type:

$ curl -g -v -X GET \
-H "@$BEARER_TOKEN_FILE" \
$URL/archivist/v2/assets?attributes.arc_display_type=Traffic%20light

Each of these calls returns a list of matching asset records in the form:

{
"assets": [

{
"identity": "assets/6a951b62-0a26-4c22-a886-1082297b063b",
"behaviours": [

"Firmware",
"Maintenance",
"RecordEvidence",
"LocationUpdate",
"Attachments"

],
"attributes": {

"arc_display_type": "Traffic light",
"arc_firmware_version": "1.0",
"arc_home_location_identity": "locations/866790d8-4ed6-4cc9-8f60-

→˓07672609b331",
"arc_serial_number": "vtl-x4-07",
"arc_description": "Traffic flow control light at A603 North East",
"arc_display_name": "tcl.ccj.003",
"some_custom_attribute": "value",
"arc_attachments": [

{
"arc_display_name": "arc_primary_image",
"arc_attachment_identity": "blobs/87b1a84c-1c6f-442b-923e-

→˓a97516f4d275",
"arc_hash_alg": "SHA256",
"arc_hash_value":

→˓"246c316e2cd6971ce5c83a3e61f9880fa6e2f14ae2976ee03500eb282fd03a60"
}

]
},
"confirmation_status": "CONFIRMED",
"tracked": "TRACKED"
}

]
}

104 Chapter 12. Assets API

Jitsuin Archivist, Release v0.1.0

12.2.6 Fetch assets by filtering for presence of a field

To fetch all assets with a field set to any value, GET the assets resource and filter on most available fields. For
example:

$ curl -g -v -X GET \
-H "@$BEARER_TOKEN_FILE" \
$URL/archivist/v2/assets?attributes.arc_display_name=*

Returns all assets which have arc_display_name that is not empty.

12.2.7 Fetch assets which are missing a field

To fetch all assets with a field which is not set to any value, GET the assets resource and filter on most available
fields. For example:

$ curl -g -v -X GET \
-H "@$BEARER_TOKEN_FILE" \
$URL/archivist/v2/assets?attributes.arc_display_name!=*

Returns all assets which do not have arc_display_name or in which arc_display_name is empty.

Note: See Behaviours and LifeCycle for details of how to interpret the system-reserved arc_* attributes.

See Upload Blob and/or Location Creation for details of how to handle the arc_home_location_identity and
arc_primary_image attributes.

Note: The number of records returned has a maximum limit. If this limit is too small then one must use API Request
Paging.

Note: The total number of assets that exist is returned in the response header field ‘x-total-count’ if the ‘x-request-
total-count’ header on the request is set to ‘true’. The curl option ‘-i’ will emit this to stdout.

Note: A full API reference is available in Swagger GET API

Create the bearer_token and store in a file in a secure local directory with 0600 permissions.

See API Request Authorization and Authentication.

Note: The following example shows use of the API over curl in a bash terminal. The concepts are fully portable to
any other REST client (eg PostMan or python requests)

Set the URL (for example):

$ export URL=https://synsation.1234-5678.nodes.archivist.jitsuin.io

Note: A full description of the workflow regarding attaching a file to an asset or event is given in Attachments.

12.2. Asset Record Retrieval 105

openapi.html#get--archivist-v2-assets

Jitsuin Archivist, Release v0.1.0

Note: The following operations assume that an attachment has been uploaded to Archivist
node using the API Upload Blob. This attachment uuid is generically referred to as blobs/
xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx in the following text.

Each attachment has an associated hash value and the name of tha hash algorithm used.

12.3 Attachments Operations API

12.3.1 Attachments Attach

Define the event parameters and store in /path/to/jsonfile:

{
"operation": "Attach",
"behaviour": "Attachments",
"event_attributes": {
"arc_append_attachments": [

{
"arc_attachment_identity": "blobs/xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx",
"arc_display_name": "an attachment 1",
"arc_hash_value": "jnwpjocoqsssnundwlqalsqiiqsqp;

→˓lpiwpldkndwwlskqaalijopjkokkkojijl",
"arc_hash_alg": "sha256",

},
{

"arc_attachment_identity": "blobs/xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx",
"arc_display_name": "an attachment 2",
"arc_hash_value":

→˓"042aea10a0f14f2d391373599be69d53a75dde9951fc3d3cd10b6100aa7a9f24",
"arc_hash_alg": "sha256",

}
]

},
"timestamp_declared": "2019-11-27T14:44:19Z",
"principal_declared": {
"issuer": "idp.synsation.io/1234",
"subject": "phil.b",
"email": "phil.b@synsation.io"

}
}

Note:

event_attributes.arc_append_attachments Required List with details of all attachments to be attached to an asset,
each attachment details must have following four fields defined:

arc_attachment_identity Required identity of an attachment

arc_display_name Required display name of an attachment

arc_hash_value Required hash of the attachment Content

arc_hash_alg Required algorithm used to calculate the hash

timestamp_declared Optional Client-claimed time at which the maintenance was performed

106 Chapter 12. Assets API

Jitsuin Archivist, Release v0.1.0

principal_declared Optional Client-claimed identity of person performing the operation

Add the Attachments request to the Asset Record by POSTing it to the resource:

$ curl -v -X POST \
-H "@$BEARER_TOKEN_FILE" \
-H "Content-type: application/json" \
-d "@/path/to/jsonfile" \
$URL/archivist/v2/assets/add30235-1424-4fda-840a-d5ef82c4c96f/events

The response is:

{
"identity": "assets/add30235-1424-4fda-840a-d5ef82c4c96f/events/11bf5b37-e0b8-42e0-

→˓8dcf-dc8c4aefc000",
"asset_identity": "assets/add30235-1424-4fda-840a-d5ef82c4c96f",
"operation": "Attach",
"behaviour": "Attachments",
"event_attributes": {
"arc_append_attachments": [

{
"arc_attachment_identity": "blobs/xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx",
"arc_display_name": "an attachment 1",
"arc_hash_value": "jnwpjocoqsssnundwlqalsqiiqsqp;

→˓lpiwpldkndwwlskqaalijopjkokkkojijl",
"arc_hash_alg": "sha256",

},
{

"arc_attachment_identity": "blobs/xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx",
"arc_display_name": "an attachment 2",
"arc_hash_value":

→˓"042aea10a0f14f2d391373599be69d53a75dde9951fc3d3cd10b6100aa7a9f24",
"arc_hash_alg": "sha256",

}
],

},
"asset_attributes": {
"arc_attachments": [
{

"arc_attachment_identity": "blobs/xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx",
"arc_display_name": "an attachment 1",
"arc_hash_value": "jnwpjocoqsssnundwlqalsqiiqsqp;

→˓lpiwpldkndwwlskqaalijopjkokkkojijl",
"arc_hash_alg": "sha256",

},
{

"arc_attachment_identity": "blobs/xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx",
"arc_display_name": "an attachment 2",
"arc_hash_value":

→˓"042aea10a0f14f2d391373599be69d53a75dde9951fc3d3cd10b6100aa7a9f24",
"arc_hash_alg": "sha256",

}
]

},
"timestamp_accepted": "2019-11-27T15:13:21Z",
"timestamp_declared": "2019-11-27T14:44:19Z",
"timestamp_committed": "2019-11-27T15:15:02Z",

(continues on next page)

12.3. Attachments Operations API 107

Jitsuin Archivist, Release v0.1.0

(continued from previous page)

"principal_declared": {
"issuer": "idp.synsation.io/1234",
"subject": "phil.b",
"email": "phil.b@synsation.io"

},
"principal_accepted": {
"issuer": "job.idp.server/1234",
"subject": "bob@job"

},
"confirmation_status": "CONFIRMED",
"block_number": 12,
"transaction_index": 5,
"transaction_id": "0x07569"

}

Note:

asset_attributes.arc_attachments Holds all asset attachments - pre-existing asset attachments and attachments pro-
vided in arc_append_attachments

Create the bearer_token and store in a file in a secure local directory with 0600 permissions.

See API Request Authorization and Authentication.

Note: The following example shows use of the API over curl in a bash terminal. The concepts are fully portable to
any other REST client (eg PostMan or python requests)

Set the URL (for example):

$ export URL=https://synsation.1234-5678.nodes.archivist.jitsuin.io

12.4 Builtin Operations API

12.4.1 Builtin Add

Define the event parameters and store in /path/to/jsonfile:

{
"operation": "Add",
"behaviour": "Builtin",
"event_attributes": {
"arc_behaviour_name": "Attachments"

},
"timestamp_declared": "2019-11-27T14:44:19Z",
"principal_declared": {
"issuer": "idp.synsation.io/1234",
"subject": "phil.b",
"email": "phil.b@synsation.io"

}
}

108 Chapter 12. Assets API

Jitsuin Archivist, Release v0.1.0

Note:

event_attributes.arc_behaviour_name Required Name of the behaviour to be added to asset

timestamp_declared Optional Client-claimed time at which the maintenance was performed

principal_declared Optional Client-claimed identity of person performing the operation

Add the Builtin request to the Asset Record by POSTing it to the resource:

$ curl -v -X POST \
-H "@$BEARER_TOKEN_FILE" \
-H "Content-type: application/json" \
-d "@/path/to/jsonfile" \
$URL/archivist/v2/assets/add30235-1424-4fda-840a-d5ef82c4c96f/events

The response is:

{
"identity": "assets/add30235-1424-4fda-840a-d5ef82c4c96f/events/11bf5b37-e0b8-42e0-

→˓8dcf-dc8c4aefc000",
"asset_identity": "assets/add30235-1424-4fda-840a-d5ef82c4c96f",
"operation": "Add",
"behaviour": "Builtin",
"event_attributes": {
"arc_behaviour_name": "Attachments"

},
"timestamp_accepted": "2019-11-27T15:13:21Z",
"timestamp_declared": "2019-11-27T14:44:19Z",
"timestamp_committed": "2019-11-27T15:15:02Z",
"principal_declared": {
"issuer": "idp.synsation.io/1234",
"subject": "phil.b",
"email": "phil.b@synsation.io"

},
"principal_accepted": {
"issuer": "job.idp.server/1234",
"subject": "bob@job"

},
"confirmation_status": "CONFIRMED",
"block_number": 12,
"transaction_index": 5,
"transaction_id": "0x07569"

}

12.4.2 Builtin Remove

Define the event parameters and store in /path/to/jsonfile:

{
"operation": "Remove",
"behaviour": "Builtin",
"event_attributes": {
"arc_behaviour_name": "Attachments"

},
"timestamp_declared": "2019-11-27T14:44:19Z",

(continues on next page)

12.4. Builtin Operations API 109

Jitsuin Archivist, Release v0.1.0

(continued from previous page)

"principal_declared": {
"issuer": "idp.synsation.io/1234",
"subject": "phil.b",
"email": "phil.b@synsation.io"

}
}

Note:

event_attributes.arc_behaviour_name Required Name of the behaviour to be added to asset

timestamp_declared Optional Client-claimed time at which the maintenance was performed

principal_declared Optional Client-claimed identity of person performing the operation

Add the Builtin request to the Asset Record by POSTing it to the resource:

$ curl -v -X POST \
-H "@$BEARER_TOKEN_FILE" \
-H "Content-type: application/json" \
-d "@/path/to/jsonfile" \
$URL/archivist/v2/assets/add30235-1424-4fda-840a-d5ef82c4c96f/events

The response is:

{
"identity": "assets/add30235-1424-4fda-840a-d5ef82c4c96f/events/11bf5b37-e0b8-42e0-

→˓8dcf-dc8c4aefc000",
"asset_identity": "assets/add30235-1424-4fda-840a-d5ef82c4c96f",
"operation": "Remove",
"behaviour": "Builtin",
"event_attributes": {
"arc_behaviour_name": "Attachments"

},
"timestamp_accepted": "2019-11-27T15:13:21Z",
"timestamp_declared": "2019-11-27T14:44:19Z",
"timestamp_committed": "2019-11-27T15:15:02Z",
"principal_declared": {
"issuer": "idp.synsation.io/1234",
"subject": "phil.b",
"email": "phil.b@synsation.io"

},
"principal_accepted": {
"issuer": "job.idp.server/1234",
"subject": "bob@job"

},
"confirmation_status": "CONFIRMED",
"block_number": 12,
"transaction_index": 5,
"transaction_id": "0x07569"

}

110 Chapter 12. Assets API

Jitsuin Archivist, Release v0.1.0

12.4.3 Builtin StartTracking

Define the event parameters and store in /path/to/jsonfile:

{
"operation": "StartTracking",
"behaviour": "Builtin",
"timestamp_declared": "2019-11-27T14:44:19Z",
"principal_declared": {
"issuer": "idp.synsation.io/1234",
"subject": "phil.b",
"email": "phil.b@synsation.io"

}
}

Note:

timestamp_declared Optional Client-claimed time at which the maintenance was performed

principal_declared Optional Client-claimed identity of person performing the operation

Add the Builtin request to the Asset Record by POSTing it to the resource:

$ curl -v -X POST \
-H "@$BEARER_TOKEN_FILE" \
-H "Content-type: application/json" \
-d "@/path/to/jsonfile" \
$URL/archivist/v2/assets/add30235-1424-4fda-840a-d5ef82c4c96f/events

The response is:

{
"identity": "assets/add30235-1424-4fda-840a-d5ef82c4c96f/events/11bf5b37-e0b8-42e0-

→˓8dcf-dc8c4aefc000",
"asset_identity": "assets/add30235-1424-4fda-840a-d5ef82c4c96f",
"operation": "StartTracking",
"behaviour": "Builtin",
"timestamp_accepted": "2019-11-27T15:13:21Z",
"timestamp_declared": "2019-11-27T14:44:19Z",
"timestamp_committed": "2019-11-27T15:15:02Z",
"principal_declared": {
"issuer": "idp.synsation.io/1234",
"subject": "phil.b",
"email": "phil.b@synsation.io"

},
"principal_accepted": {
"issuer": "job.idp.server/1234",
"subject": "bob@job"

},
"confirmation_status": "CONFIRMED",
"block_number": 12,
"transaction_index": 5,
"transaction_id": "0x07569"

}

12.4. Builtin Operations API 111

Jitsuin Archivist, Release v0.1.0

12.4.4 Builtin StopTracking

Define the event parameters and store in /path/to/jsonfile:

{
"operation": "StopTracking",
"behaviour": "Builtin",
"timestamp_declared": "2019-11-27T14:44:19Z",
"principal_declared": {
"issuer": "idp.synsation.io/1234",
"subject": "phil.b",
"email": "phil.b@synsation.io"

}
}

Note:

timestamp_declared Optional Client-claimed time at which the maintenance was performed

principal_declared Optional Client-claimed identity of person performing the operation

Add the Builtin request to the Asset Record by POSTing it to the resource:

$ curl -v -X POST \
-H "@$BEARER_TOKEN_FILE" \
-H "Content-type: application/json" \
-d "@/path/to/jsonfile" \
$URL/archivist/v2/assets/add30235-1424-4fda-840a-d5ef82c4c96f/events

The response is:

{
"identity": "assets/add30235-1424-4fda-840a-d5ef82c4c96f/events/11bf5b37-e0b8-42e0-

→˓8dcf-dc8c4aefc000",
"asset_identity": "assets/add30235-1424-4fda-840a-d5ef82c4c96f",
"operation": "StopTracking",
"behaviour": "Builtin",
"timestamp_accepted": "2019-11-27T15:13:21Z",
"timestamp_declared": "2019-11-27T14:44:19Z",
"timestamp_committed": "2019-11-27T15:15:02Z",
"principal_declared": {
"issuer": "idp.synsation.io/1234",
"subject": "phil.b",
"email": "phil.b@synsation.io"

},
"principal_accepted": {
"issuer": "job.idp.server/1234",
"subject": "bob@job"

},
"confirmation_status": "CONFIRMED",
"block_number": 12,
"transaction_index": 5,
"transaction_id": "0x07569"

}

Create the bearer_token and store in a file in a secure local directory with 0600 permissions.

See API Request Authorization and Authentication.

112 Chapter 12. Assets API

Jitsuin Archivist, Release v0.1.0

Note: The following example shows use of the API over curl in a bash terminal. The concepts are fully portable to
any other REST client (eg PostMan or python requests)

Set the URL (for example):

$ export URL=https://synsation.1234-5678.nodes.archivist.jitsuin.io

12.5 RecordEvidence Operations API

12.5.1 RecordEvidence Record

Define the event parameters and store in /path/to/jsonfile:

{
"operation": "Record",
"behaviour": "RecordEvidence",
"event_attributes": {
"arc_description": "Safety conformance approved for version 1.6. See attached

→˓conformance report",
"arc_evidence": "DVA Conformance Report attached",
"conformance_report": "blobs/e2a1d16c-03cd-45a1-8cd0-690831df1273"

},
"timestamp_declared": "2019-11-27T14:44:19Z",
"principal_declared": {
"issuer": "idp.synsation.io/1234",
"subject": "phil.b",
"email": "phil.b@synsation.io"

}
}

Note:

attributes.arc_description Required Details of the RecordEvidence request

attributes.arc_evidence Required The evidence to be retained in the asset history

attributes.conformance_report Example Client can add any additional information in further attributes, including
free text or attachments

timestamp_declared Optional Client-claimed time at which the maintenance was performed

principal_declared Optional Client-claimed identity of person performing the operation

Add the RecordEvidence request to the Asset Record by POSTing it to the resource:

$ curl -v -X POST \
-H "@$BEARER_TOKEN_FILE" \
-H "Content-type: application/json" \
-d "@/path/to/jsonfile" \
$URL/archivist/v2/assets/add30235-1424-4fda-840a-d5ef82c4c96f/events

The response is:

12.5. RecordEvidence Operations API 113

Jitsuin Archivist, Release v0.1.0

{
"identity": "assets/add30235-1424-4fda-840a-d5ef82c4c96f/events/11bf5b37-e0b8-42e0-

→˓8dcf-dc8c4aefc000",
"asset_identity": "assets/add30235-1424-4fda-840a-d5ef82c4c96f",
"operation": "Record",
"behaviour": "RecordEvidence",
"event_attributes": {
"arc_description": "Safety conformance approved for version 1.6. See attached

→˓conformance report",
"arc_evidence": "DVA Conformance Report attached",
"conformance_report": "blobs/e2a1d16c-03cd-45a1-8cd0-690831df1273"

},
"timestamp_accepted": "2019-11-27T15:13:21Z",
"timestamp_declared": "2019-11-27T14:44:19Z",
"timestamp_committed": "2019-11-27T15:15:02Z",
"principal_declared": {
"issuer": "idp.synsation.io/1234",
"subject": "phil.b",
"email": "phil.b@synsation.io"

},
"principal_accepted": {
"issuer": "job.idp.server/1234",
"subject": "bob@job"

},
"confirmation_status": "CONFIRMED",
"block_number": 12,
"transaction_index": 5,
"transaction_id": "0x07569"

}

12.6 Assets Swagger API

GET /archivist/v2/assets
List Archivist assets

Retrieves a list of Archivist assets

Query Parameters

• attributes.arc_display_name (string) – List only Assets with this friendly
name

• attributes.arc_display_type (string) – List only Assets of this type

• page_size (integer) – Maximum results per page.

• page_token (string) – The next_page_token returned from a previous list request if
any.

• order_by (string) – Specify the sort order for the results.

• tracked (string) – indicates whether asset is still being tracked in the system

• confirmation_status (string) – indicates if the asset has been succesfully com-
mitted to the blockchain

• storage_integrity (string) – XXX: #4483 DEPRECATED use proof_mechanism

DEPRECATED use proof_mechanism

114 Chapter 12. Assets API

Jitsuin Archivist, Release v0.1.0

• proof_mechanism (string) – proof mechanism of the asset (and all its events)

the mechanism used to provide evidential proof

• chain_id (string) – chain id of the blockchain associated with this asset

• privacy (string) – privacy filter of the asset (and all its events)

the privacy status of the asset

Status Codes

• 200 OK – A successful response.

• 206 Partial Content – The number of assets exceeds the servers limit. The approximate
number of matching results is provided by the x-total-count header if the ‘x-request-total-
count’ header on the request is set to ‘true’. The exact limit is available in the content-range
header. The value format is ‘items 0-LIMIT/TOTAL’. Note that x-total-count is always
present for 200 and 206 responses. It is the servers best available approximation. Similarly,
in any result set, you may get a few more than LIMIT items.

• 401 Unauthorized – Returned when the user is not authenticated to the system.

• 403 Forbidden – Returned when the user is not authorized to list Assets.

• 429 Too Many Requests – Returned when a user exceeds their subscription’s rate limit for
requests.

• default – An unexpected error response.

Response JSON Object

• assets[].at_time (string) – indicates time the asset data is from (read only)

• assets[].attributes (object) – key value mapping of asset properties

• assets[].behaviours[] (string) –

• assets[].chain_id (string) – chain id of the blockchain associated with this asset
(read only)

• assets[].confirmation_status (string) –

• assets[].identity (string) – relative resource address assets/{UUID} (read only)

• assets[].owner (string) – wallet address of the asset owner (read only)

• assets[].proof_mechanism (string) –

• assets[].public (boolean) – Public asset

• assets[].storage_integrity (string) – Specifies how the asset data will be
stored. This is set once on creation and does not change.

• assets[].tenant_identity (string) – Identity of the tenant the that created this
asset

• assets[].tracked (string) –

• next_page_token (string) – Token to retrieve the next page of results or empty if
there are none.

POST /archivist/v2/assets
Create an Archivist asset

Creates an Archivist asset

Request JSON Object

12.6. Assets Swagger API 115

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.7
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
https://www.rfc-editor.org/rfc/rfc6585#section-4

Jitsuin Archivist, Release v0.1.0

• attributes (object) – key value mapping of asset attributes

• behaviours[] (string) –

• public (boolean) – Public asset. A public asset and all its events are visible to the
general public.Sharing to specific organisations is not available for public assets.

Status Codes

• 200 OK – A successful response.

• 401 Unauthorized – Returned when the user is not authenticated to the system.

• 402 Payment Required – Returned when the user either has not enabled blockchain storage
orthe number of assets would exceed the user’s quota

• 403 Forbidden – Returned when the user is not authorized to create an Asset.

• 429 Too Many Requests – Returned when a user exceeds their subscription’s rate limit for
requests.

• default – An unexpected error response.

Response JSON Object

• at_time (string) – indicates time the asset data is from (read only)

• attributes (object) – key value mapping of asset properties

• behaviours[] (string) –

• chain_id (string) – chain id of the blockchain associated with this asset (read only)

• confirmation_status (string) –

• identity (string) – relative resource address assets/{UUID} (read only)

• owner (string) – wallet address of the asset owner (read only)

• proof_mechanism (string) –

• public (boolean) – Public asset

• storage_integrity (string) – Specifies how the asset data will be stored. This is
set once on creation and does not change.

• tenant_identity (string) – Identity of the tenant the that created this asset

• tracked (string) –

GET /archivist/v2/assets/{uuid}
Retrieves a specific Archivist asset

Retrieves a specific Archivist asset

Parameters

• uuid (string) – Specify the Asset UUID where assets/{uuid} is the Asset Identity e.g.
add30235-1424-4fda-840a-d5ef82c4c96f from Identity assets/add30235-1424-4fda-840a-
d5ef82c4c96f

Query Parameters

• at_time (string) – Specify time in the past to show asset data as it was at time specified

Status Codes

• 200 OK – A successful response.

116 Chapter 12. Assets API

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.3
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
https://www.rfc-editor.org/rfc/rfc6585#section-4
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

Jitsuin Archivist, Release v0.1.0

• 401 Unauthorized – Returned when the user is not authenticated to the system.

• 403 Forbidden – Returned when the user is not authorized to view an Asset.

• 404 Not Found – Returned when the asset with the id does not exist.

• 429 Too Many Requests – Returned when a user exceeds their subscription’s rate limit for
requests.

• default – An unexpected error response.

Response JSON Object

• at_time (string) – indicates time the asset data is from (read only)

• attributes (object) – key value mapping of asset properties

• behaviours[] (string) –

• chain_id (string) – chain id of the blockchain associated with this asset (read only)

• confirmation_status (string) –

• identity (string) – relative resource address assets/{UUID} (read only)

• owner (string) – wallet address of the asset owner (read only)

• proof_mechanism (string) –

• public (boolean) – Public asset

• storage_integrity (string) – Specifies how the asset data will be stored. This is
set once on creation and does not change.

• tenant_identity (string) – Identity of the tenant the that created this asset

• tracked (string) –

12.6. Assets Swagger API 117

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://www.rfc-editor.org/rfc/rfc6585#section-4

Jitsuin Archivist, Release v0.1.0

118 Chapter 12. Assets API

CHAPTER

THIRTEEN

EVENTS API

13.1 Event Record Creation

Events are created on an asset via the behaviour interfaces such as RecordEvidence, Firmware or
Maintenance.

See Assets API.

13.2 Event Record Retrieval

Create the bearer_token and store in a file in a secure local directory with 0600 permissions.

See API Request Authorization and Authentication.

Note: The following example shows use of the API over curl in a bash terminal. The concepts are fully portable to
any other REST client (eg PostMan or python requests)

Set the URL (for example):

$ export URL=https://synsation.1234-5678.nodes.archivist.jitsuin.io

Event records in Jitsuin Archivist are tokenized at creation time and referred to in all API calls and smart contracts
throughout the system by a unique identity of the form:

assets/12345678-90ab-cdef-1234-567890abcdef/events/11bf5b37-e0b8-42e0-8dcf-
→˓dc8c4aefc000

If you do not know the event’s identity you can fetch event records using other information you do know, such as the
event’s name in your asset management or digital twin platform.

119

Jitsuin Archivist, Release v0.1.0

13.2.1 Fetch all events

To fetch all event records, simply GET the events resource:

$ curl -v -X GET \
-H "@$BEARER_TOKEN_FILE" \
$URL/archivist/v2/assets/-/events

13.2.2 Fetch events by asset identity

If you know the unique identity of the Asset Record simply GET the resource:

$ curl -v -X GET \
-H "@$BEARER_TOKEN_FILE" \
$URL/archivist/v2/assets/6a951b62-0a26-4c22-a886-1082297b063b/events

13.2.3 Fetch events by behaviour name

To fetch all events with a specific behaviour, GET the events resource and filter on behaviour:

$ curl -g -v -X GET \
-H "@$BEARER_TOKEN_FILE" \
$URL/archivist/v2/assets/-/events?behaviour=firmware

13.2.4 Fetch events by behaviour name and operation

To fetch all events with a specific behaviour and operation, GET the events resource and filter on firmware and
update:

$ curl -g -v -X GET \
-H "@$BEARER_TOKEN_FILE" \
$URL/archivist/v2/assets/-/events?behaviour=firmware&operation=update

13.2.5 Fetch events by filtering on field names

To fetch all events with a specific characteristics, GET the events resource and filter on most available fields. For
example:

$ curl -g -v -X GET \
-H "@$BEARER_TOKEN_FILE" \
$URL/archivist/v2/assets/-/events?attributes.arc_firmware_version=1.23

120 Chapter 13. Events API

Jitsuin Archivist, Release v0.1.0

13.2.6 Fetch events by filtering on dates

To fetch all events occurring at different dates, GET the events resource and filter on timestamps. For example:

$ curl -g -v -X GET \
-H "@$BEARER_TOKEN_FILE" \
$URL/archivist/v2/assets/-/events?timestamp_accepted_before=2019-12-01T00:00:00Z

Other timestamp filters are timestamp_accepted_since, timestamp_committed_before,
timestamp_committed_since, timestamp_declared_before,
timestamp_declared_since.

13.2.7 Responses

Each of these calls returns a list of matching event records in the form:

{
"identity": "assets/add30235-1424-4fda-840a-d5ef82c4c96f/events/11bf5b37-e0b8-42e0-

→˓8dcf-dc8c4aefc000",
"asset_identity": "assets/add30235-1424-4fda-840a-d5ef82c4c96f",
"behaviour": "Firmware",
"operation": "Update",
"event_attributes": {
"arc_description": "Patched during regular patch window",
"arc_correlation_value": "12-345-67"

},
"asset_attributes": {
"arc_firmware_version": "3.2.1",

},
"timestamp_accepted": "2019-11-27T15:13:21Z",
"timestamp_declared": "2019-11-27T14:44:19Z",
"timestamp_committed": "2019-11-27T15:15:02Z",
"principal_declared": {
"issuer": "idp.synsation.io/1234",
"subject": "phil.b",
"email": "phil.b@synsation.io"

},
"principal_accepted": {
"issuer": "job.idp.server/1234",
"subject": "bob@job"

},
"confirmation_status": "CONFIRMED",
"block_number": 12,
"transaction_index": 5,
"transaction_id": "0x07569"

}

Note: See Behaviours and LifeCycle for details of how to interpret the system-reserved arc_* attributes.

Note: The number of records returned has a maximum limit. If this limit is too small then one must use API Request
Paging.

13.2. Event Record Retrieval 121

Jitsuin Archivist, Release v0.1.0

Note: The total number of assets that exist is returned in the response header field ‘x-total-count’ if the ‘x-request-
total-count’ header on the request is set to ‘true’. The curl option ‘-i’ will emit this to stdout.

Note: A full API reference is available in Swagger GET API

13.3 Events Swagger API

GET /archivist/v2/assets/{uuid}/events
List Archivist events

Lists Archivist events

Parameters

• uuid (string) – Specify the Asset UUID where assets/{uuid} is the Asset Identity e.g.
add30235-1424-4fda-840a-d5ef82c4c96f from Identity assets/add30235-1424-4fda-840a-
d5ef82c4c96f. Use - to list Events for all Assets

Query Parameters

• attributes.arc_display_type (string) – Only list Events matching this event
type

• page_size (integer) – Maximum results per page.

• page_token (string) – The next_page_token returned from a previous list request if
any.

• order_by (string) – Specify the sort order for the results.

• confirmation_status (string) – indicates if the asset has been succesfully com-
mitted to the blockchain

• principal_declared.issuer (string) – optional issuer of the principal identity.
Where the issuer is not provided the subject is treated as a free string

• principal_declared.subject (string) – unique identifier of the principal
(within issuer context)

• principal_declared.display_name (string) – The displayable name of the
end-user. The name claim is prefered, followed by email claims, then a composite of
given_name, middle_name, family_name

• principal_declared.email (string) – The email for the end-user if available.
If email_verified is available it is preferd. Empty if neither email_verified or email are
provided by the IdP

• principal_accepted.issuer (string) – optional issuer of the principal identity.
Where the issuer is not provided the subject is treated as a free string

• principal_accepted.subject (string) – unique identifier of the principal
(within issuer context)

• principal_accepted.display_name (string) – The displayable name of the
end-user. The name claim is prefered, followed by email claims, then a composite of
given_name, middle_name, family_name

122 Chapter 13. Events API

openapi.html#get--archivist-v2-assets

Jitsuin Archivist, Release v0.1.0

• principal_accepted.email (string) – The email for the end-user if available.
If email_verified is available it is preferd. Empty if neither email_verified or email are
provided by the IdP

• timestamp_accepted_since (string) – Filtering

Only list events when timestamp_accepted is greater

• timestamp_accepted_before (string) – Only list events when times-
tamp_accepted is lesser

• timestamp_committed_since (string) – Only list events when times-
tamp_committed is greater

• timestamp_committed_before (string) – Only list events when times-
tamp_committed is lesser

• timestamp_declared_since (string) – Only list events when times-
tamp_declared is greater

• timestamp_declared_before (string) – Only list events when times-
tamp_declared is lesser

• operation (string) –

• behaviour (string) –

• proof_mechanism (string) – mechanism for evidential proof for Events on this Asset

specify the mechanism used to provide evidential proof for Events on this Asset

Status Codes

• 200 OK – A successful response.

• 206 Partial Content – The number of events exceeds the servers limit. The approximate
number of matching results is provided by the x-total-count header, the exact limit is avail-
able in the content-range header. The value format is ‘items 0-LIMIT/TOTAL’. Note that
x-total-count is always present for 200 and 206 responses. It is the servers best available
approximation. Similarly, in any result set, you may get a few more than LIMIT items.

• 401 Unauthorized – Returned when the user is not authenticated to the system.

• 403 Forbidden – Returned when the user is not authorized to list Events.

• 429 Too Many Requests – Returned when a user exceeds their subscription’s rate limit for
requests.

• default – An unexpected error response.

Response JSON Object

• events[].asset_attributes (object) – key value mapping of asset attributes

• events[].asset_identity (string) – identity of a related asset resource
assets/11bf5b37-e0b8-42e0-8dcf-dc8c4aefc000 (read only)

• events[].behaviour (string) – The behaviour used to create event. RecordEvi-
dence (read only)

• events[].block_number (string) – number of block event was commited on (read
only)

• events[].confirmation_status (string) –

• events[].event_attributes (object) – key value mapping of event attributes

13.3. Events Swagger API 123

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.7
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
https://www.rfc-editor.org/rfc/rfc6585#section-4

Jitsuin Archivist, Release v0.1.0

• events[].from (string) – wallet address for the creator of this event (read only)

• events[].identity (string) – identity of a event resource (read only)

• events[].operation (string) – The operation represented by the event. Record
(read only)

• events[].principal_accepted.display_name (string) – The displayable
name of the end-user. The name claim is prefered, followed by email claims, then a com-
posite of given_name, middle_name, family_name

• events[].principal_accepted.email (string) – The email for the end-user
if available. If email_verified is available it is preferd. Empty if neither email_verified or
email are provided by the IdP

• events[].principal_accepted.issuer (string) – optional issuer of the prin-
cipal identity. Where the issuer is not provided the subject is treated as a free string

• events[].principal_accepted.subject (string) – unique identifier of the
principal (within issuer context)

• events[].principal_declared.display_name (string) – The displayable
name of the end-user. The name claim is prefered, followed by email claims, then a com-
posite of given_name, middle_name, family_name

• events[].principal_declared.email (string) – The email for the end-user
if available. If email_verified is available it is preferd. Empty if neither email_verified or
email are provided by the IdP

• events[].principal_declared.issuer (string) – optional issuer of the prin-
cipal identity. Where the issuer is not provided the subject is treated as a free string

• events[].principal_declared.subject (string) – unique identifier of the
principal (within issuer context)

• events[].tenant_identity (string) – Identity of the tenant the that created this
event

• events[].timestamp_accepted (string) – time of event as recorded by the
server (read only)

• events[].timestamp_committed (string) – time of event as recorded on
blockchain (read only)

• events[].timestamp_declared (string) – time of event as declared by the user
(read only)

• events[].transaction_id (string) – hash of the transaction as a hex string
0x11bf5b37e0b842e08dcfdc8c4aefc000

• events[].transaction_index (string) – index of event within commited block
(read only)

• next_page_token (string) – Token to retrieve the next page of results or empty if
there are none.

GET /archivist/v2/assets/{asset_uuid}/events/{uuid}
Retrieves Archivist event

Retrieves a specific Archivist event

Parameters

124 Chapter 13. Events API

Jitsuin Archivist, Release v0.1.0

• asset_uuid (string) – Specify the Asset UUID where as-
sets/{asset_uuid}/events/{uuid} is the Event Identity e.g. add30235-1424-
4fda-840a-d5ef82c4c96f from Identity assets/add30235-1424-4fda-840a-
d5ef82c4c96f/events/11bf5b37-e0b8-42e0-8dcf-dc8c4aefc000

• uuid (string) – Specify the Event UUID where assets/{asset_uuid}/events/{uuid} is the
Event Identity e.g. 11bf5b37-e0b8-42e0-8dcf-dc8c4aefc000 from Identity assets/add30235-
1424-4fda-840a-d5ef82c4c96f/events/11bf5b37-e0b8-42e0-8dcf-dc8c4aefc000

Status Codes

• 200 OK – A successful response.

• 401 Unauthorized – Returned when the user is not authenticated to the system.

• 403 Forbidden – Returned when the user is not authorized to view Event.

• 404 Not Found – Returned when the event does not exist.

• 429 Too Many Requests – Returned when a user exceeds their subscription’s rate limit for
requests.

• default – An unexpected error response.

Response JSON Object

• asset_attributes (object) – key value mapping of asset attributes

• asset_identity (string) – identity of a related asset resource assets/11bf5b37-e0b8-
42e0-8dcf-dc8c4aefc000 (read only)

• behaviour (string) – The behaviour used to create event. RecordEvidence (read only)

• block_number (string) – number of block event was commited on (read only)

• confirmation_status (string) –

• event_attributes (object) – key value mapping of event attributes

• from (string) – wallet address for the creator of this event (read only)

• identity (string) – identity of a event resource (read only)

• operation (string) – The operation represented by the event. Record (read only)

• principal_accepted.display_name (string) – The displayable name of the
end-user. The name claim is prefered, followed by email claims, then a composite of
given_name, middle_name, family_name

• principal_accepted.email (string) – The email for the end-user if available.
If email_verified is available it is preferd. Empty if neither email_verified or email are
provided by the IdP

• principal_accepted.issuer (string) – optional issuer of the principal identity.
Where the issuer is not provided the subject is treated as a free string

• principal_accepted.subject (string) – unique identifier of the principal
(within issuer context)

• principal_declared.display_name (string) – The displayable name of the
end-user. The name claim is prefered, followed by email claims, then a composite of
given_name, middle_name, family_name

• principal_declared.email (string) – The email for the end-user if available.
If email_verified is available it is preferd. Empty if neither email_verified or email are
provided by the IdP

13.3. Events Swagger API 125

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://www.rfc-editor.org/rfc/rfc6585#section-4

Jitsuin Archivist, Release v0.1.0

• principal_declared.issuer (string) – optional issuer of the principal identity.
Where the issuer is not provided the subject is treated as a free string

• principal_declared.subject (string) – unique identifier of the principal
(within issuer context)

• tenant_identity (string) – Identity of the tenant the that created this event

• timestamp_accepted (string) – time of event as recorded by the server (read only)

• timestamp_committed (string) – time of event as recorded on blockchain (read
only)

• timestamp_declared (string) – time of event as declared by the user (read only)

• transaction_id (string) – hash of the transaction as a hex string
0x11bf5b37e0b842e08dcfdc8c4aefc000

• transaction_index (string) – index of event within commited block (read only)

GET /archivist/v2/assets/{asset_uuid}/events/{uuid}:publicurl
Retrieves the public url for a specific Archivist event.

Retrieves the public url for a specific Archivist event.

Parameters

• asset_uuid (string) – Specify the Asset UUID where as-
sets/{asset_uuid}/events/{uuid} is the Event Identity e.g. add30235-1424-
4fda-840a-d5ef82c4c96f from Identity assets/add30235-1424-4fda-840a-
d5ef82c4c96f/events/11bf5b37-e0b8-42e0-8dcf-dc8c4aefc000

• uuid (string) – Specify the Event UUID where assets/{asset_uuid}/events/{uuid} is the
Event Identity e.g. 11bf5b37-e0b8-42e0-8dcf-dc8c4aefc000 from Identity assets/add30235-
1424-4fda-840a-d5ef82c4c96f/events/11bf5b37-e0b8-42e0-8dcf-dc8c4aefc000

Status Codes

• 200 OK – A successful response.

• 401 Unauthorized – Returned when the user is not authenticated to the system.

• 403 Forbidden – Returned when the user is not authorized to view an Asset.

• 404 Not Found – Returned when the asset with the id does not exist.

• 429 Too Many Requests – Returned when a user exceeds their subscription’s rate limit for
requests.

• default – An unexpected error response.

Response JSON Object

• publicurl (string) –

126 Chapter 13. Events API

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://www.rfc-editor.org/rfc/rfc6585#section-4

CHAPTER

FOURTEEN

BLOCKCHAIN API (V1ALPHA2)

14.1 Blockchain Retrieval (v1alpha2)

Create the bearer_token and store in a file in a secure local directory with 0600 permissions.

See API Request Authorization and Authentication.

Note: The following example shows use of the API over curl in a bash terminal. The concepts are fully portable to
any other REST client (eg PostMan or python requests)

Set the URL (for example):

$ export URL=https://synsation.1234-5678.nodes.archivist.jitsuin.io

Blockchain transactions in Jitsuin Archivist are available via this interface. The transactions are available from the
blockchain endpoint using the assets event Id as a parameter:

assets/add30235-1424-4fda-840a-d5ef82c4c96f/events/11bf5b37-e0b8-42e0-8dcf-
→˓dc8c4aefc000

14.1.1 Fetch Transactions for an event (v1alpha2)

To fetch all transactions for an asset event GET the blockchain resource:

$ curl -v -X GET \
-H "@$BEARER_TOKEN_FILE" \
$URL/archivist/v1alpha2/blockchain/assets/add30235-1424-4fda-840a-d5ef82c4c96f/

→˓events/11bf5b37-e0b8-42e0-8dcf-dc8c4aefc000

Each of these calls returns a list of matching blockchain transactions in the form:

{
"transactions": [

{
"hash":

→˓"0x9fc76417374aa880d4449a1f7f31ec597f00b1f6f3dd2d66f4c9c6c445836d8b",
"nonce": 2,
"blockHash":

→˓"0xef95f2f1ed3ca60b048b4bf67cde2195961e0bba6f70bcbea9a2c4e133e34b46",
"blockNumber": 3,
"transactionIndex": 0,

(continues on next page)

127

Jitsuin Archivist, Release v0.1.0

(continued from previous page)

"r": "0x8912348621879462817634897216348712638941",
"s": "0x1234689712638957682375682364892376487238",
"from": "0xa94f5374fce5edbc8e2a8697c15331677e6ebf0b",
"to": "0x6295ee1b4f6dd65047762f924ecd367c17eabf8f",
"value": "123450000000000000",
"gas": 314159,
"gasPrice": "2000000000000",
"input": "0x57cb2fc4",
"v": "0x26"

},
{

"hash":
→˓"0x9fc76417374aa880d4449a1f7f31ec597f00b1f6f3dd2d66f4c9c6c445836d8b",

"nonce": 2,
"blockHash":

→˓"0xef1234567d3ca60b048b4bf67cde2195961e0bba6f70bcbea9a2c4e133e34b46",
"blockNumber": 3,
"transactionIndex": 0,
"r": "0x8912348621879462817634897216348712638941",
"s": "0x1234689712638957682375682364892376487238",
"from": "0xa94f5374fce5edbc8e2a8697c15331677e6ebf0b",
"to": "0x6295ee1b4f6dd65047762f924ecd367c17eabf8f",
"value": "123450000000000000",
"gas": 314159,
"gasPrice": "2000000000000",
"input": "0x57cb2fc4",
"v": "0x26"

}
]

}

Note: The number of records returned has a maximum limit. If this limit is too small then one must use API Request
Paging.

A full API reference is available in Swagger GET API

14.2 Blockchain Swagger API

GET /archivist/v1alpha2/blockchain/assets/{asset_uuid}/events/{uuid}
List of Blockchain Transactions associated with an event.

List of Blockchain Transactions associated with an event. If the event’s asset has a proof mechanism of khipu,
this will be a list of transactions that compose the event. If the event’s asset has a proof mecahnism of simple
hash, this will be a list containing one transaction, that describes the simple hash anchor transaction. If the list
is empty, the event has not been anchored yet.

Parameters

• asset_uuid (string) – Specify the Asset UUID where as-
sets/{asset_uuid}/events/{uuid} is the Event Identity e.g. add30235-1424-
4fda-840a-d5ef82c4c96f from Identity assets/add30235-1424-4fda-840a-
d5ef82c4c96f/events/11bf5b37-e0b8-42e0-8dcf-dc8c4aefc000

128 Chapter 14. Blockchain API (v1alpha2)

openapi.html#get--archivist-v1alpha2-blockchain

Jitsuin Archivist, Release v0.1.0

• uuid (string) – Specify the Event UUID where assets/{asset_uuid}/events/{uuid} is the
Event Identity e.g. 11bf5b37-e0b8-42e0-8dcf-dc8c4aefc000 from Identity assets/add30235-
1424-4fda-840a-d5ef82c4c96f/events/11bf5b37-e0b8-42e0-8dcf-dc8c4aefc000

Query Parameters

• page_size (integer) – Maximum entries per page

• page_token (string) – The next_page_token returned from a previous list request if
any.

Status Codes

• 200 OK – A successful response.

• 401 Unauthorized – Returned when the user is not authenticated to the system.

• 403 Forbidden – Returned when the user is not authorized to view event’s blockchain trans-
actions.

• 404 Not Found – Returned when the asset with the id does not exist. or the event with the
id does not exist

• 429 Too Many Requests – Returned when a user exceeds their subscription’s rate limit for
requests.

• default – An unexpected error response.

Response JSON Object

• next_page_token (string) – Token to retrieve the next page of results or empty if
there are none.

• transactions[].khipu_details (object) –

• transactions[].kind (string) –

• transactions[].simple_hash_details.anchor_hash (string) –

• transactions[].simple_hash_details.api_query (string) –

• transactions[].simple_hash_details.end_time (string) –

• transactions[].simple_hash_details.event_count (integer) –

• transactions[].simple_hash_details.hash_schema_version
(integer) –

• transactions[].simple_hash_details.start_time (string) –

• transactions[].transaction.block_number (string) – Block number

• transactions[].transaction.blockhash (string) – Block Hash

• transactions[].transaction.from (string) – From. . .

• transactions[].transaction.gas (string) – Gas left

• transactions[].transaction.gas_price (string) – Gas Price

• transactions[].transaction.hash (string) – Transaction hash

• transactions[].transaction.input (string) – Input. . .

• transactions[].transaction.nonce (string) – Nonce

• transactions[].transaction.r (string) – Signature: R value

• transactions[].transaction.s (string) – Signature: S Value

14.2. Blockchain Swagger API 129

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://www.rfc-editor.org/rfc/rfc6585#section-4

Jitsuin Archivist, Release v0.1.0

• transactions[].transaction.to (string) – To. . .

• transactions[].transaction.transaction_index (integer) – Transac-
tion Index

• transactions[].transaction.v (string) – Signature: V value

• transactions[].transaction.value (string) – Value

GET /archivist/v1alpha2/blockchain:openapi
Get OpenAPI spec for Blockchain

Get OpenAPI v2.0 spec for Blockchain

Status Codes

• 200 OK – A successful response.

• 401 Unauthorized – Returned when the user is not authenticated to the system.

• 429 Too Many Requests – Returned when a user exceeds their subscription’s rate limit for
requests.

• default – An unexpected error response.

GET /archivist/v1alpha2/blockchain:openapi-ui
Get OpenAPI UI for Blockchain

Get OpenAPI v2.0 UI for Blockchain

Status Codes

• 200 OK – A successful response.

• 401 Unauthorized – Returned when the user is not authenticated to the system.

• 429 Too Many Requests – Returned when a user exceeds their subscription’s rate limit for
requests.

• default – An unexpected error response.

130 Chapter 14. Blockchain API (v1alpha2)

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.rfc-editor.org/rfc/rfc6585#section-4
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.rfc-editor.org/rfc/rfc6585#section-4

CHAPTER

FIFTEEN

SYSTEM API

The system API allows access to the various resources in the Archivist syetem.

15.1 Archivistnode

Create the bearer_token and store in a file in a secure local directory with 0600 permissions.

See API Request Authorization and Authentication.

Note: The following example shows use of the API over curl in a bash terminal. The concepts are fully portable to
any other REST client (eg PostMan or python requests)

Set the URL (for example):

$ export URL=https://synsation.1234-5678.nodes.archivist.jitsuin.io

The archivistnode endpoint reports on the status of the blockchain.

Query the endpoint:

$ curl -v -X GET \
-H "@$BEARER_TOKEN_FILE" \
$URL/archivist/v1/archivistnode

The response is:

{
"identity": "quorum",
"blockchain_nodes": [

{
"validator_pubkey": {

"kty": "EC",
"crv": "P-256K",
"x": "VBKHictTWJC-3sqknXCb8MI4IxTc3c_My7lnem2C74E=",
"y": "ItNeb5d-6vEHkvtUOcDYrEADxsZXeOCJm18pQWntenE=",
"d": ""

},
"block_height": "38773",
"connection_status": "REACHABLE"
"genesis_hash":

→˓"0x1b526bd9c7f9bf7c43ba91ad07e5530eb7ceedf390396f9fbfeb68722e097e95",
"state_root":

→˓"0x9606fc44a382938703678ac90581ab1260c9efd20ea8c7f90c87852bc982f3a7", (continues on next page)

131

Jitsuin Archivist, Release v0.1.0

(continued from previous page)

"timestamp_committed": "2019-01-02T01:03:07Z",
"timestamp_created": "2019-01-01T12:00:27Z",
"syncing": null,
"peers": [

{
"validator_pubkey": {

"kty": "EC",
"crv": "P-256K",
"x": "o0uZ8ix5DE42srPCw1o22wYibkHGkvyCuLVqwcVAxb0=",
"y": "W43sUjWg-ociR2x3CcAlWeOqc6oDkYui1JLup1q-ojU=",
"d": ""

},
"connection_status": "REACHABLE"

},
{

"validator_pubkey": {
"kty": "EC",
"crv": "P-256K",
"x": "5HcU1PJgTe0LGyGxKFrIPFZWdTbxPySfi6bKxdQeO8A=",
"y": "dEpMURyTwEGzpgIgLdm4Csl1BgF6H39tb1Kf8wLLhVI=",
"d": ""

},
"connection_status": "REACHABLE"

}
]

}
]

}

Note:

identity identifies the blockchain service.

The response contains a list of blockchain identities and attributes.

Each member of the list has the following attributes:

validator_pubkey public key (ECDSA).

block_height current no. of blocks in blockchain. May be zero if node is UNREACHABLE.

connection_status

• REACHABLE: node is reachable.

• UNREACHABLE: node is currently unreachable.

genesis_hash hash of the genesis block - use to verify that the blockchain is unchanged

state_root state_root for the public state in the genesis block - use to verify that the blockchain is unchanged

timestamp_committed timestamp (UTC) of latest block in the blockchain. May be zero (Jan 1st 1970) if node is
UNREACHABLE.

timestamp_created timestamp (UTC) of genesis block in blockchain.

syncing if not null contains 3 integer fields, StartingBlock, CurrentBlock and HighestBlock indicating the the progress
of syncing with the blockchain.

peers list of peers.

132 Chapter 15. System API

Jitsuin Archivist, Release v0.1.0

Each peer contains:

validator_pubkey public key (ECDSA).

connection_status

• REACHABLE: blockchain is connected.

• UNREACHABLE: peer is currently unreachable.

See Swagger GET API

15.2 Archivistnode Swagger API

GET /archivist/v1/archivistnode
Get information about an archivist node

Returns the identified archivist node

Status Codes

• 200 OK – A successful response.

• 401 Unauthorized – Returned when the user is not authenticated to the system.

• 403 Forbidden – Returned when the user is not authorized to read the archivist node’s infor-
mation

• 404 Not Found – Returned when the identified archivist node does not exist

• 429 Too Many Requests – Returned when a user exceeds their subscription’s rate limit for
requests.

• default – An unexpected error response.

Response JSON Object

• blockchain_nodes[].block_height (string) – For the local node, the height
of the last committed block (read only)

• blockchain_nodes[].connection_status (string) –

• blockchain_nodes[].genesis_hash (string) – HASH of genesis block. (read
only)

• blockchain_nodes[].peers[].connection_status (string) –

• blockchain_nodes[].peers[].validator_pubkey.keyEC.crv (string)
– The curve name for the key. 6.2.1.1 rfc 7518, 3.1 draft-ietf-cose-webauthn-algorithms-00
MUST be one of P-256K, P-256, P-384, P-521

• blockchain_nodes[].peers[].validator_pubkey.keyEC.d (string) –
Present only for PRIVATE keys. The base64url encoding of the private key 6.2.2.1 rfc
7518

• blockchain_nodes[].peers[].validator_pubkey.keyEC.kty (string)
–

• blockchain_nodes[].peers[].validator_pubkey.keyEC.x (string) –
The base64url encoding of the x component for the uncompressed point. 6.2.1.2 rfc 7518

• blockchain_nodes[].peers[].validator_pubkey.keyEC.y (string) –
The base64url encoding of the y component the uncompressed point 6.2.1.3 rfc 7518

15.2. Archivistnode Swagger API 133

openapi.html#get--archivist-v1-archivistnode
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://www.rfc-editor.org/rfc/rfc6585#section-4

Jitsuin Archivist, Release v0.1.0

• blockchain_nodes[].state_root (string) – state root of genesis block. (read
only)

• blockchain_nodes[].syncStatus.current_block (string) – When sync-
ing, the current block. (read only)

• blockchain_nodes[].syncStatus.highest_block (string) – When sync-
ing, the highest block. (read only)

• blockchain_nodes[].syncStatus.starting_block (string) – When
syncing, the starting block. (read only)

• blockchain_nodes[].timestamp_committed (string) – Timestamp when
consensus was achieved for the block at block_height (RFC 3339) obtained from the block
info of the ‘latest’ block. (read only)

• blockchain_nodes[].timestamp_created (string) – Timestamp of creation
of the genesis block (RFC 3339) (read only)

• blockchain_nodes[].validator_pubkey.keyEC.crv (string) – The curve
name for the key. 6.2.1.1 rfc 7518, 3.1 draft-ietf-cose-webauthn-algorithms-00 MUST be
one of P-256K, P-256, P-384, P-521

• blockchain_nodes[].validator_pubkey.keyEC.d (string) – Present only
for PRIVATE keys. The base64url encoding of the private key 6.2.2.1 rfc 7518

• blockchain_nodes[].validator_pubkey.keyEC.kty (string) –

• blockchain_nodes[].validator_pubkey.keyEC.x (string) – The
base64url encoding of the x component for the uncompressed point. 6.2.1.2 rfc 7518

• blockchain_nodes[].validator_pubkey.keyEC.y (string) – The
base64url encoding of the y component the uncompressed point 6.2.1.3 rfc 7518

• identity (string) – The identity of the archivistnode blockchain (read only)

GET /archivist/v1/archivistnode:openapi
Get OpenAPI spec for Archivistnode

Get OpenAPI v2.0 spec for Archivistnode

Status Codes

• 200 OK – A successful response.

• 401 Unauthorized – Returned when the user is not authenticated to the system.

• 429 Too Many Requests – Returned when a user exceeds their subscription’s rate limit for
requests.

• default – An unexpected error response.

GET /archivist/v1/archivistnode:openapi-ui
Get OpenAPI html for Archivistnode

Get OpenAPI v2.0 html for Archivistnode

Status Codes

• 200 OK – A successful response.

• 401 Unauthorized – Returned when the user is not authenticated to the system.

• 429 Too Many Requests – Returned when a user exceeds their subscription’s rate limit for
requests.

134 Chapter 15. System API

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.rfc-editor.org/rfc/rfc6585#section-4
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.rfc-editor.org/rfc/rfc6585#section-4

Jitsuin Archivist, Release v0.1.0

• default – An unexpected error response.

15.2. Archivistnode Swagger API 135

Jitsuin Archivist, Release v0.1.0

136 Chapter 15. System API

CHAPTER

SIXTEEN

MISCELLANEOUS

16.1 API Request Paging

The varied endponts of the archivist API contain GET operations that return a list of json records. This list size is
restricted at deployment of archivist (depending on the endpoint) to prevent buffer and memory overflow.

If the user wishes to access all records of the endpoint then the page_size parameter must be specified and the code
must loop through repeated requests until no more records can be returned.

The first call to the endpoint specifies the page_size. The response body may contain a field next_page_token. If
this is specified and non-empty repeated calls to the endpoint specifying page_token=${next_page_token}
are made until no next_page_token (or an empty value) is returned in the response.

16.1.1 CURL

Specify the required page_size on the first call to the endpoint and then the page_token if specified in the response:

RESPONSE=$(curl -v -X GET \
-H "@$BEARER_TOKEN_FILE" \
$URL/archivist/v2/assets?page_size=100)

echo $RESPONSE | jq '.' # send to stdout

TOKEN=$(echo ${RESPONSE} | jq -r '.next_page_token')

while [-n "${TOKEN}"]
do

RESPONSE=$(curl -v -X GET \
-H "@$BEARER_TOKEN_FILE" \
$URL/archivist/v2/assets?page_token=${TOKEN})

echo $RESPONSE | jq '.' # send to stdout

TOKEN=$(echo ${RESPONSE} | jq -r '.next_page_token')

done

137

Jitsuin Archivist, Release v0.1.0

16.1.2 Python

Alternatively a better solution is to use a python iterator. See the iterator method of the python class
below.

"""Archivist interface (python 3.6)
"""

import json
import logging
from os import environ
from os.path import sep as ospathsep
import requests
import urllib3

class ArchivistException(Exception):
"""Indicate error
"""

class Archivist:

def __init__(self, url, auth, root="archivist", verify=True):
self._baseurl = url
self._auth = 'Bearer ' + auth.strip()
self._auth_headers = {

'content-type': 'application/json',
'authorization': self._auth,

}
self._root = root
self._verify = verify

@property
def auth_headers(self):

return self._auth_headers

@property
def baseurl(self):

return self._baseurl

@property
def root(self):

return self._root

@property
def verify(self):

return self._verify

def query_path(self, target):
query_path = ospathsep.join([self._baseurl, self._root, target])
logging.debug(query_path)
return query_path

def get(self, target):

response = requests.get(
self.query_path(target),

(continues on next page)

138 Chapter 16. Miscellaneous

Jitsuin Archivist, Release v0.1.0

(continued from previous page)

headers=self._auth_headers,
verify=self._verify,

)

logging.debug(response)

return response

def asset(self, asset_id):
"""Returns asset

asset_id: asset identity
"""
response = self.get(f"v2/{asset_id}")
if response.status_code != 200:

raise ArchivistException(f"Response code is {response.status_code}")

return response.json()

def post(self, target, request):

response = requests.post(
self.query_path(target),
data=json.dumps(request),
headers=self._auth_headers,
verify=self._verify,

)

logging.debug(response)

return response

def iterator(self, path, field, page_size=None, query_params=""):
"""Returns iterator that lists objects

path: REST path e.g. v2/assets
query_params: REST query string - must begin with &

If page size is specified return the list of records in batches of page_size
until next_page_token in response is null.

If page size is unspecified return up to the internal limit of records.
(different for each endpoint)
"""

paging = ""
if page_size is not None:

paging = f"page_size={page_size}"

while True:
response = self.get(f"{path}?{paging}{query_params}")
logging.debug(response)

if response.status_code != 200:
raise ArchivistException(f"Response code is {response.status_code}")

data = response.json()
(continues on next page)

16.1. API Request Paging 139

Jitsuin Archivist, Release v0.1.0

(continued from previous page)

try:
records = data[field]

except KeyError:
raise ArchivistException(f"No {field} found")

for record in records:
yield record

token = data.get("next_page_token")
if not token:

break

paging = f"page_token={token}"

def assets(self, page_size=None, query_params=None):
"""Returns iterator that lists assets

query_params: REST query string
"""
return self.iterator(

"v2/assets",
"assets",
page_size=page_size,
query_params,

)

def events(self, page_size=None, query_params=None):
"""Returns iterator that lists events

query_params: REST query string
"""
return self.iterator(

"v2/assets/-/events",
"events",
page_size=page_size,
query_params,

)

def blockchain(self, identity, page_size=None):
"""Returns iterator that lists blockchain transactions

identity: asset/event identity
"""
return self.iterator(

f"vialpha1/blockchain/{identity}",
"transactions",
page_size=page_size,

)

and typical usage may look like this:

Initialise connection to Archivist
archivist = Archivist(archivist_url, authtoken)
if archivist is None:

raise SystemExit

no_of_events = 0
(continues on next page)

140 Chapter 16. Miscellaneous

Jitsuin Archivist, Release v0.1.0

(continued from previous page)

for event in archivist.events(
page_size=10,
query_params="confirmation_status=CONFIRMED",

):
no_of_events += 1
print("event", event)

no_of_transactions = 0
for transaction in archivist.blockchain(

"assets/add30235-1424-4fda-840a-d5ef82c4c96f/events/11bf5b37-e0b8-42e0-8dcf-
→˓dc8c4aefc000",

page_size=10,
):

no_of_transactions += 1
print("transaction", transaction)

16.1. API Request Paging 141

Jitsuin Archivist, Release v0.1.0

142 Chapter 16. Miscellaneous

HTTP ROUTING TABLE

/archivist
GET /archivist/iam/v1/access_policies,

66
GET /archivist/iam/v1/access_policies/{uuid},

68
GET /archivist/iam/v1/access_policies/{uuid}/assets,

70
GET /archivist/iam/v1/access_policies:caps,

71
GET /archivist/iam/v1/access_policies:openapi,

73
GET /archivist/iam/v1/access_policies:openapi-ui,

73
GET /archivist/iam/v1/assets/{uuid}/access_policies,

72
GET /archivist/iam/v1/subjects, 78
GET /archivist/iam/v1/subjects/{uuid},

80
GET /archivist/iam/v1/subjects:openapi,

82
GET /archivist/iam/v1/subjects:openapi-ui,

82
GET /archivist/v1/archivistnode, 133
GET /archivist/v1/archivistnode:openapi,

134
GET /archivist/v1/archivistnode:openapi-ui,

134
GET /archivist/v1/attachments/{uuid},

84
GET /archivist/v1/attachments/{uuid}/info,

85
GET /archivist/v1/compliance/assets/{uuid},

48
GET /archivist/v1/compliance_policies,

49
GET /archivist/v1/compliance_policies/{uuid},

51
GET /archivist/v1/compliance_policies:caps,

52
GET /archivist/v1/compliance_policies:openapi,

52
GET /archivist/v1/compliance_policies:openapi-ui,

53
GET /archivist/v1/tlscacertificates, 37
GET /archivist/v1/tlscacertificates/{uuid},

38
GET /archivist/v1/tlscacertificates:caps,

40
GET /archivist/v1/tlscacertificates:openapi,

40
GET /archivist/v1/tlscacertificates:openapi-ui,

41
GET /archivist/v1alpha2/blockchain/assets/{asset_uuid}/events/{uuid},

128
GET /archivist/v1alpha2/blockchain:openapi,

130
GET /archivist/v1alpha2/blockchain:openapi-ui,

130
GET /archivist/v2/assets, 114
GET /archivist/v2/assets/{asset_uuid}/events/{uuid},

124
GET /archivist/v2/assets/{asset_uuid}/events/{uuid}:publicurl,

126
GET /archivist/v2/assets/{uuid}, 116
GET /archivist/v2/assets/{uuid}/events,

122
GET /archivist/v2/locations, 94
GET /archivist/v2/locations/{uuid}, 95
GET /archivist/v2/locations/{uuid}/permissions,

97
GET /archivist/v2/locations:caps, 98
GET /archivist/v2/locations:openapi, 98
GET /archivist/v2/locations:openapi-ui,

99
POST /archivist/iam/v1/access_policies,

67
POST /archivist/iam/v1/subjects, 79
POST /archivist/v1/compliance_policies,

50
POST /archivist/v1/tlscacertificates,

38
POST /archivist/v2/assets, 115
POST /archivist/v2/locations, 94
DELETE /archivist/iam/v1/access_policies/{uuid},

143

Jitsuin Archivist, Release v0.1.0

69
DELETE /archivist/iam/v1/subjects/{uuid},

80
DELETE /archivist/v1/compliance_policies/{uuid},

51
DELETE /archivist/v1/tlscacertificates/{uuid},

39
DELETE /archivist/v2/locations/{uuid},

96
PATCH /archivist/iam/v1/access_policies/{uuid},

69
PATCH /archivist/iam/v1/subjects/{uuid},

81
PATCH /archivist/v1/tlscacertificates/{uuid},

39
PATCH /archivist/v2/locations/{uuid},

96
PATCH /archivist/v2/locations/{uuid}/permissions,

98

144 HTTP Routing Table

	Introduction
	LifeCycle
	Behaviours
	Attachments
	Locations
	Access Policies
	Compliance Policies

	Administrator configuration
	Register your Azure Active Directory with Jitsuin
	Assign Users for Interactive Use
	Configure Client Credentials for Non-Interactive Access
	Getting Access Tokens (client secret)
	Testing Access
	Using PingOne for Enterprise as IDP

	API Request Authorization and Authentication
	Tenancies API
	Tenancy Information

	TLS CA Certificates Management (v1)
	TLS CA Certificates Upload (v1)
	TLS CA Certificate Retrieval (v1)
	TLS CA Certificate Deletion (v1)
	TLS CA Certificates Update (v1)
	TLS CA Certificates Swagger API

	Compliance API
	Compliance
	Creating Compliance Policies
	Types of Compliance Policies
	Compliance Policy Creation
	Compliance Checking
	Compliance Swagger API

	Identity and Access Management (v1)
	IAM Access Policies API (v1)
	IAM Subjects API (v1)

	Attachments API
	Retrieve Attachment
	Attachments Swagger API

	Attachments V2 API
	Retrieve Attachment

	BlobsV1 API
	Upload Blob
	Retrieve Blob

	Locations API
	Location Creation
	Location Retrieval
	Locations Swagger API

	Assets API
	Asset Record Creation
	Asset Record Retrieval
	Attachments Operations API
	Builtin Operations API
	RecordEvidence Operations API
	Assets Swagger API

	Events API
	Event Record Creation
	Event Record Retrieval
	Events Swagger API

	Blockchain API (v1alpha2)
	Blockchain Retrieval (v1alpha2)
	Blockchain Swagger API

	System API
	Archivistnode
	Archivistnode Swagger API

	Miscellaneous
	API Request Paging

	HTTP Routing Table

